Major Changes: - Added Ollama as alternative LLM provider to OpenAI - Implemented flexible provider switching via environment variables - Support for multiple embedding models (OpenAI and Ollama) - Created comprehensive Ollama setup guide Configuration Changes (config.py): - Added LLM_PROVIDER and EMBEDDER_PROVIDER settings - Added Ollama configuration: base URL, LLM model, embedding model - Modified get_mem0_config() to dynamically switch providers - OpenAI API key now optional when using Ollama - Added validation to ensure required keys based on provider Supported Configurations: 1. Full OpenAI (default): - LLM_PROVIDER=openai - EMBEDDER_PROVIDER=openai 2. Full Ollama (local): - LLM_PROVIDER=ollama - EMBEDDER_PROVIDER=ollama 3. Hybrid configurations: - Ollama LLM + OpenAI embeddings - OpenAI LLM + Ollama embeddings Ollama Models Supported: - LLM: llama3.1:8b, llama3.1:70b, mistral:7b, codellama:7b, phi3:3.8b - Embeddings: nomic-embed-text, mxbai-embed-large, all-minilm Documentation: - Created docs/setup/ollama.mdx - Complete Ollama setup guide - Installation methods (host and Docker) - Model selection and comparison - Docker Compose configuration - Performance tuning and GPU acceleration - Migration guide from OpenAI - Troubleshooting section - Updated README.md with Ollama features - Updated .env.example with provider selection - Marked Phase 2 as complete in roadmap Environment Variables: - LLM_PROVIDER: Select LLM provider (openai/ollama) - EMBEDDER_PROVIDER: Select embedding provider (openai/ollama) - OLLAMA_BASE_URL: Ollama API endpoint (default: http://localhost:11434) - OLLAMA_LLM_MODEL: Ollama model for text generation - OLLAMA_EMBEDDING_MODEL: Ollama model for embeddings - MEM0_EMBEDDING_DIMS: Must match embedding model dimensions Breaking Changes: - None - defaults to OpenAI for backward compatibility Migration Notes: - When switching from OpenAI to Ollama embeddings, existing embeddings must be cleared due to dimension changes (1536 → 768 for nomic-embed-text) - Update MEM0_EMBEDDING_DIMS to match chosen embedding model Benefits: ✅ Cost savings - no API costs with local models ✅ Privacy - all data stays local ✅ Offline capability - works without internet ✅ Model variety - access to many open-source models ✅ Flexibility - easy switching between providers Version: 1.1.0 Status: Phase 2 Complete - Production Ready with Ollama Support 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
48 lines
1.0 KiB
Plaintext
48 lines
1.0 KiB
Plaintext
# LLM Provider Selection
|
|
# Options: "openai" or "ollama"
|
|
LLM_PROVIDER=openai
|
|
EMBEDDER_PROVIDER=openai
|
|
|
|
# OpenAI Configuration
|
|
# Required when LLM_PROVIDER=openai or EMBEDDER_PROVIDER=openai
|
|
OPENAI_API_KEY=sk-your-openai-api-key-here
|
|
|
|
# Ollama Configuration
|
|
# Required when LLM_PROVIDER=ollama or EMBEDDER_PROVIDER=ollama
|
|
# Ollama must be running and models must be pulled
|
|
OLLAMA_BASE_URL=http://localhost:11434
|
|
OLLAMA_LLM_MODEL=llama3.1:8b
|
|
OLLAMA_EMBEDDING_MODEL=nomic-embed-text
|
|
|
|
# Supabase Configuration
|
|
SUPABASE_CONNECTION_STRING=postgresql://user:password@host:5432/database
|
|
|
|
# Neo4j Configuration
|
|
NEO4J_URI=neo4j://neo4j:7687
|
|
NEO4J_USER=neo4j
|
|
NEO4J_PASSWORD=your-neo4j-password
|
|
|
|
# API Configuration
|
|
API_HOST=0.0.0.0
|
|
API_PORT=8080
|
|
API_KEY=your-secure-api-key-here
|
|
|
|
# MCP Server Configuration
|
|
MCP_HOST=0.0.0.0
|
|
MCP_PORT=8765
|
|
|
|
# Mem0 Configuration
|
|
MEM0_COLLECTION_NAME=t6_memories
|
|
MEM0_EMBEDDING_DIMS=1536
|
|
MEM0_VERSION=v1.1
|
|
|
|
# Docker Network
|
|
DOCKER_NETWORK=localai
|
|
|
|
# Logging
|
|
LOG_LEVEL=INFO
|
|
LOG_FORMAT=json
|
|
|
|
# Environment
|
|
ENVIRONMENT=development
|