Files
t6_mem0_v2/docs/architecture.mdx
Claude Code 61a4050a8e Complete implementation: REST API, MCP server, and documentation
Implementation Summary:
- REST API with FastAPI (complete CRUD operations)
- MCP Server with Python MCP SDK (7 tools)
- Supabase migrations (pgvector setup)
- Docker Compose orchestration
- Mintlify documentation site
- Environment configuration
- Shared config module

REST API Features:
- POST /v1/memories/ - Add memory
- GET /v1/memories/search - Semantic search
- GET /v1/memories/{id} - Get memory
- GET /v1/memories/user/{user_id} - User memories
- PATCH /v1/memories/{id} - Update memory
- DELETE /v1/memories/{id} - Delete memory
- GET /v1/health - Health check
- GET /v1/stats - Statistics
- Bearer token authentication
- OpenAPI documentation

MCP Server Tools:
- add_memory - Add from messages
- search_memories - Semantic search
- get_memory - Retrieve by ID
- get_all_memories - List all
- update_memory - Update content
- delete_memory - Delete by ID
- delete_all_memories - Bulk delete

Infrastructure:
- Neo4j 5.26 with APOC/GDS
- Supabase pgvector integration
- Docker network: localai
- Health checks and monitoring
- Structured logging

Documentation:
- Introduction page
- Quickstart guide
- Architecture deep dive
- Mintlify configuration

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-14 08:44:16 +02:00

314 lines
9.8 KiB
Plaintext

---
title: 'System Architecture'
description: 'Technical architecture and design decisions for T6 Mem0 v2'
---
## Architecture Overview
T6 Mem0 v2 implements a **hybrid storage architecture** combining vector search, graph relationships, and structured data storage for optimal memory management.
```
┌─────────────────────────────────────────────────────────────┐
│ Client Layer │
├──────────────────┬──────────────────┬──────────────────────┤
│ Claude Code (MCP)│ N8N Workflows │ External Apps │
└──────────────────┴──────────────────┴──────────────────────┘
│ │ │
│ │ │
▼ ▼ ▼
┌─────────────────────────────────────────────────────────────┐
│ Interface Layer │
├──────────────────────────────┬──────────────────────────────┤
│ MCP Server (Port 8765) │ REST API (Port 8080) │
│ - SSE Connections │ - FastAPI │
│ - MCP Protocol │ - OpenAPI Spec │
│ - Tool Registration │ - Auth Middleware │
└──────────────────────────────┴──────────────────────────────┘
│ │
└────────┬───────────┘
┌─────────────────────────────────────────────────────────────┐
│ Core Layer │
│ Mem0 Core Library │
│ - Memory Management - Embedding Generation │
│ - Semantic Search - Relationship Extraction │
│ - Multi-Agent Support - Deduplication │
└─────────────────────────────────────────────────────────────┘
┌───────────────────┼───────────────────┐
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Vector Store │ │ Graph Store │ │ External LLM │
│ Supabase │ │ Neo4j │ │ OpenAI │
│ (pgvector) │ │ (Cypher) │ │ (Embeddings) │
│ 172.21.0.12 │ │ 172.21.0.x │ │ API Cloud │
└─────────────────┘ └─────────────────┘ └─────────────────┘
```
## Design Decisions
### 1. Hybrid Storage Architecture ✅
**Why Multiple Storage Systems?**
Each store is optimized for specific query patterns:
<AccordionGroup>
<Accordion title="Vector Store (Supabase + pgvector)">
**Purpose**: Semantic similarity search
- Stores 1536-dimensional OpenAI embeddings
- HNSW indexing for fast approximate nearest neighbor search
- O(log n) query performance
- Cosine distance for similarity measurement
</Accordion>
<Accordion title="Graph Store (Neo4j)">
**Purpose**: Relationship modeling
- Entity extraction and connection mapping
- Relationship traversal and pathfinding
- Visual exploration in Neo4j Browser
- Dynamic knowledge graph evolution
</Accordion>
<Accordion title="Key-Value Store (PostgreSQL JSONB)">
**Purpose**: Flexible metadata
- Schema-less metadata storage
- Fast JSON queries with GIN indexes
- Eliminates need for separate Redis
- Simplifies infrastructure
</Accordion>
</AccordionGroup>
### 2. MCP Server Implementation
**Custom vs. Pre-built**
<Info>
We built a custom MCP server instead of using OpenMemory MCP because:
- OpenMemory uses Qdrant (we need Supabase)
- Full control over Supabase + Neo4j integration
- Exact match to our storage stack
</Info>
### 3. Docker Networking Strategy
**localai Network Integration**
All services run on the `localai` Docker network (172.21.0.0/16):
```yaml
services:
neo4j: 172.21.0.x:7687
api: 172.21.0.x:8080
mcp-server: 172.21.0.x:8765
supabase: 172.21.0.12:5432 (existing)
```
**Benefits:**
- Container-to-container communication
- Service discovery via Docker DNS
- No host networking complications
- Persistent IPs via Docker Compose
## Data Flow
### Adding a Memory
<Steps>
<Step title="Client Request">
Client sends conversation messages via MCP or REST API
</Step>
<Step title="Mem0 Processing">
- LLM extracts key facts from messages
- Generates embedding vector (1536-dim)
- Identifies entities and relationships
</Step>
<Step title="Vector Storage">
Stores embedding + metadata in Supabase (pgvector)
</Step>
<Step title="Graph Storage">
Creates nodes and relationships in Neo4j
</Step>
<Step title="Response">
Returns memory ID and confirmation to client
</Step>
</Steps>
### Searching Memories
<Steps>
<Step title="Query Embedding">
Convert search query to vector using OpenAI
</Step>
<Step title="Vector Search">
Find similar memories in Supabase (cosine similarity)
</Step>
<Step title="Graph Enrichment">
Fetch related context from Neo4j graph
</Step>
<Step title="Ranked Results">
Return memories sorted by relevance score
</Step>
</Steps>
## Performance Characteristics
Based on mem0.ai research:
<CardGroup cols={3}>
<Card title="26% Accuracy Boost" icon="chart-line">
Higher accuracy vs baseline OpenAI
</Card>
<Card title="91% Lower Latency" icon="bolt">
Compared to full-context approaches
</Card>
<Card title="90% Token Savings" icon="dollar-sign">
Through selective memory retrieval
</Card>
</CardGroup>
## Security Architecture
### Authentication
- **REST API**: Bearer token authentication
- **MCP Server**: Client-specific SSE endpoints
- **Tokens**: Stored securely in environment variables
### Data Privacy
<Check>
All data stored locally - no cloud sync or external storage
</Check>
- Supabase instance is local (172.21.0.12)
- Neo4j runs in Docker container
- User isolation via `user_id` filtering
### Network Security
- Services on private Docker network
- No public exposure (use reverse proxy if needed)
- Internal communication only
## Scalability
### Horizontal Scaling
<Tabs>
<Tab title="REST API">
Deploy multiple API containers behind load balancer
</Tab>
<Tab title="MCP Server">
Dedicated instances per client group
</Tab>
<Tab title="Mem0 Core">
Stateless design scales with containers
</Tab>
</Tabs>
### Vertical Scaling
- **Supabase**: PostgreSQL connection pooling
- **Neo4j**: Memory configuration tuning
- **Vector Indexing**: HNSW for performance
## Technology Choices
| Component | Technology | Why? |
|-----------|-----------|------|
| Core Library | mem0ai | Production-ready, 26% accuracy boost |
| Vector DB | Supabase (pgvector) | Existing infrastructure, PostgreSQL |
| Graph DB | Neo4j | Best-in-class graph database |
| LLM | OpenAI | High-quality embeddings, GPT-4o |
| REST API | FastAPI | Fast, modern, auto-docs |
| MCP Protocol | Python MCP SDK | Official MCP implementation |
| Containers | Docker Compose | Simple orchestration |
## Phase 2: Ollama Integration
**Configuration-driven provider switching:**
```python
# Phase 1 (OpenAI)
"llm": {
"provider": "openai",
"config": {"model": "gpt-4o-mini"}
}
# Phase 2 (Ollama)
"llm": {
"provider": "ollama",
"config": {
"model": "llama3.1:8b",
"ollama_base_url": "http://172.21.0.1:11434"
}
}
```
**No code changes required** - just environment variables!
## Monitoring & Observability
### Metrics to Track
- Memory operations per second
- Average response time
- Vector search latency
- Graph query complexity
- OpenAI token usage
### Logging
- Structured JSON logs
- Request/response tracking
- Error aggregation
- Performance profiling
<Tip>
Use Prometheus + Grafana for production monitoring
</Tip>
## Deep Dive Resources
For complete architectural details, see:
- [ARCHITECTURE.md](https://git.colsys.tech/klas/t6_mem0_v2/blob/main/ARCHITECTURE.md)
- [PROJECT_REQUIREMENTS.md](https://git.colsys.tech/klas/t6_mem0_v2/blob/main/PROJECT_REQUIREMENTS.md)
## Next Steps
<CardGroup cols={2}>
<Card
title="Setup Supabase"
icon="database"
href="/setup/supabase"
>
Configure vector store
</Card>
<Card
title="Setup Neo4j"
icon="diagram-project"
href="/setup/neo4j"
>
Configure graph database
</Card>
<Card
title="API Reference"
icon="code"
href="/api-reference/introduction"
>
Explore endpoints
</Card>
<Card
title="MCP Integration"
icon="plug"
href="/mcp/introduction"
>
Connect with Claude Code
</Card>
</CardGroup>