Files
t6_mem0_v2/docs/introduction.mdx
Claude Code 61a4050a8e Complete implementation: REST API, MCP server, and documentation
Implementation Summary:
- REST API with FastAPI (complete CRUD operations)
- MCP Server with Python MCP SDK (7 tools)
- Supabase migrations (pgvector setup)
- Docker Compose orchestration
- Mintlify documentation site
- Environment configuration
- Shared config module

REST API Features:
- POST /v1/memories/ - Add memory
- GET /v1/memories/search - Semantic search
- GET /v1/memories/{id} - Get memory
- GET /v1/memories/user/{user_id} - User memories
- PATCH /v1/memories/{id} - Update memory
- DELETE /v1/memories/{id} - Delete memory
- GET /v1/health - Health check
- GET /v1/stats - Statistics
- Bearer token authentication
- OpenAPI documentation

MCP Server Tools:
- add_memory - Add from messages
- search_memories - Semantic search
- get_memory - Retrieve by ID
- get_all_memories - List all
- update_memory - Update content
- delete_memory - Delete by ID
- delete_all_memories - Bulk delete

Infrastructure:
- Neo4j 5.26 with APOC/GDS
- Supabase pgvector integration
- Docker network: localai
- Health checks and monitoring
- Structured logging

Documentation:
- Introduction page
- Quickstart guide
- Architecture deep dive
- Mintlify configuration

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-14 08:44:16 +02:00

169 lines
5.0 KiB
Plaintext

---
title: Introduction
description: 'Welcome to T6 Mem0 v2 - Memory System for LLM Applications'
---
<img
className="block dark:hidden"
src="/images/hero-light.svg"
alt="Hero Light"
/>
<img
className="hidden dark:block"
src="/images/hero-dark.svg"
alt="Hero Dark"
/>
## What is T6 Mem0 v2?
T6 Mem0 v2 is a comprehensive memory system for LLM applications built on **mem0.ai**, featuring:
- 🔌 **MCP Server Integration** - Native Model Context Protocol support for Claude Code and AI tools
- 🌐 **REST API** - Full HTTP API for memory operations
- 🗄️ **Hybrid Storage** - Supabase (vector) + Neo4j (graph) for optimal performance
- 🤖 **AI-Powered** - OpenAI embeddings with 26% accuracy improvement
- 📊 **Graph Visualization** - Explore memory relationships in Neo4j Browser
- 🐳 **Docker-Native** - Fully containerized deployment
## Key Features
<CardGroup cols={2}>
<Card
title="Semantic Memory Search"
icon="magnifying-glass"
href="/api-reference/memories/search"
>
Find relevant memories using AI-powered semantic similarity
</Card>
<Card
title="MCP Integration"
icon="plug"
href="/mcp/introduction"
>
Use as MCP server with Claude Code, Cursor, and other AI tools
</Card>
<Card
title="Graph Relationships"
icon="diagram-project"
href="/setup/neo4j"
>
Visualize and explore memory connections with Neo4j
</Card>
<Card
title="Multi-Agent Support"
icon="users"
href="/api-reference/introduction"
>
Isolate memories by user, agent, or run identifiers
</Card>
</CardGroup>
## Architecture
T6 Mem0 v2 uses a **hybrid storage architecture** for optimal performance:
```
┌──────────────────────────────────┐
│ Clients (Claude, N8N, Apps) │
└──────────────┬───────────────────┘
┌──────────────┴───────────────────┐
│ MCP Server (8765) + REST (8080) │
└──────────────┬───────────────────┘
┌──────────────┴───────────────────┐
│ Mem0 Core Library │
└──────────────┬───────────────────┘
┌──────────┴──────────┐
│ │
┌───┴──────┐ ┌──────┴─────┐
│ Supabase │ │ Neo4j │
│ (Vector) │ │ (Graph) │
└──────────┘ └────────────┘
```
### Storage Layers
- **Vector Store (Supabase)**: Semantic similarity search with pgvector
- **Graph Store (Neo4j)**: Relationship modeling between memories
- **Key-Value Store (PostgreSQL JSONB)**: Flexible metadata storage
## Performance
Based on mem0.ai research:
- **26% higher accuracy** compared to baseline OpenAI
- **91% lower latency** than full-context approaches
- **90% token cost savings** through selective retrieval
## Use Cases
<AccordionGroup>
<Accordion icon="comment" title="Conversational AI">
Maintain context across conversations, remember user preferences, and provide personalized responses
</Accordion>
<Accordion icon="robot" title="AI Agents">
Give agents long-term memory, enable learning from past interactions, and improve decision-making
</Accordion>
<Accordion icon="headset" title="Customer Support">
Remember customer history, track issues across sessions, and provide consistent support
</Accordion>
<Accordion icon="graduation-cap" title="Educational Tools">
Track learning progress, adapt to user knowledge level, and personalize content delivery
</Accordion>
</AccordionGroup>
## Quick Links
<CardGroup cols={2}>
<Card
title="Quickstart"
icon="rocket"
href="/quickstart"
>
Get up and running in 5 minutes
</Card>
<Card
title="Architecture Deep Dive"
icon="sitemap"
href="/architecture"
>
Understand the system design
</Card>
<Card
title="API Reference"
icon="code"
href="/api-reference/introduction"
>
Explore the REST API
</Card>
<Card
title="MCP Integration"
icon="link"
href="/mcp/introduction"
>
Connect with Claude Code
</Card>
</CardGroup>
## Technology Stack
- **Core**: mem0ai library
- **Vector DB**: Supabase with pgvector
- **Graph DB**: Neo4j 5.x
- **LLM**: OpenAI API (Phase 1), Ollama (Phase 2)
- **REST API**: FastAPI + Pydantic
- **MCP**: Python MCP SDK
- **Container**: Docker & Docker Compose
## Support & Community
- **Repository**: [git.colsys.tech/klas/t6_mem0_v2](https://git.colsys.tech/klas/t6_mem0_v2)
- **mem0.ai**: [Official mem0 website](https://mem0.ai)
- **Issues**: Contact maintainer
---
Ready to get started? Continue to the [Quickstart Guide](/quickstart).