---
title: Introduction
description: 'Welcome to T6 Mem0 v2 - Memory System for LLM Applications'
---
## What is T6 Mem0 v2?
T6 Mem0 v2 is a comprehensive memory system for LLM applications built on **mem0.ai**, featuring:
- 🔌 **MCP Server Integration** - Native Model Context Protocol support for Claude Code and AI tools
- 🌐 **REST API** - Full HTTP API for memory operations
- 🗄️ **Hybrid Storage** - Supabase (vector) + Neo4j (graph) for optimal performance
- 🤖 **AI-Powered** - OpenAI embeddings with 26% accuracy improvement
- 📊 **Graph Visualization** - Explore memory relationships in Neo4j Browser
- 🐳 **Docker-Native** - Fully containerized deployment
## Key Features
Find relevant memories using AI-powered semantic similarity
Use as MCP server with Claude Code, Cursor, and other AI tools
Visualize and explore memory connections with Neo4j
Isolate memories by user, agent, or run identifiers
## Architecture
T6 Mem0 v2 uses a **hybrid storage architecture** for optimal performance:
```
┌──────────────────────────────────┐
│ Clients (Claude, N8N, Apps) │
└──────────────┬───────────────────┘
│
┌──────────────┴───────────────────┐
│ MCP Server (8765) + REST (8080) │
└──────────────┬───────────────────┘
│
┌──────────────┴───────────────────┐
│ Mem0 Core Library │
└──────────────┬───────────────────┘
│
┌──────────┴──────────┐
│ │
┌───┴──────┐ ┌──────┴─────┐
│ Supabase │ │ Neo4j │
│ (Vector) │ │ (Graph) │
└──────────┘ └────────────┘
```
### Storage Layers
- **Vector Store (Supabase)**: Semantic similarity search with pgvector
- **Graph Store (Neo4j)**: Relationship modeling between memories
- **Key-Value Store (PostgreSQL JSONB)**: Flexible metadata storage
## Performance
Based on mem0.ai research:
- **26% higher accuracy** compared to baseline OpenAI
- **91% lower latency** than full-context approaches
- **90% token cost savings** through selective retrieval
## Use Cases
Maintain context across conversations, remember user preferences, and provide personalized responses
Give agents long-term memory, enable learning from past interactions, and improve decision-making
Remember customer history, track issues across sessions, and provide consistent support
Track learning progress, adapt to user knowledge level, and personalize content delivery
## Quick Links
Get up and running in 5 minutes
Understand the system design
Explore the REST API
Connect with Claude Code
## Technology Stack
- **Core**: mem0ai library
- **Vector DB**: Supabase with pgvector
- **Graph DB**: Neo4j 5.x
- **LLM**: OpenAI API (Phase 1), Ollama (Phase 2)
- **REST API**: FastAPI + Pydantic
- **MCP**: Python MCP SDK
- **Container**: Docker & Docker Compose
## Support & Community
- **Repository**: [git.colsys.tech/klas/t6_mem0_v2](https://git.colsys.tech/klas/t6_mem0_v2)
- **mem0.ai**: [Official mem0 website](https://mem0.ai)
- **Issues**: Contact maintainer
---
Ready to get started? Continue to the [Quickstart Guide](/quickstart).