--- title: Introduction description: 'Welcome to T6 Mem0 v2 - Memory System for LLM Applications' --- Hero Light Hero Dark ## What is T6 Mem0 v2? T6 Mem0 v2 is a comprehensive memory system for LLM applications built on **mem0.ai**, featuring: - 🔌 **MCP Server Integration** - Native Model Context Protocol support for Claude Code and AI tools - 🌐 **REST API** - Full HTTP API for memory operations - 🗄️ **Hybrid Storage** - Supabase (vector) + Neo4j (graph) for optimal performance - 🤖 **AI-Powered** - OpenAI embeddings with 26% accuracy improvement - 📊 **Graph Visualization** - Explore memory relationships in Neo4j Browser - 🐳 **Docker-Native** - Fully containerized deployment ## Key Features Find relevant memories using AI-powered semantic similarity Use as MCP server with Claude Code, Cursor, and other AI tools Visualize and explore memory connections with Neo4j Isolate memories by user, agent, or run identifiers ## Architecture T6 Mem0 v2 uses a **hybrid storage architecture** for optimal performance: ``` ┌──────────────────────────────────┐ │ Clients (Claude, N8N, Apps) │ └──────────────┬───────────────────┘ │ ┌──────────────┴───────────────────┐ │ MCP Server (8765) + REST (8080) │ └──────────────┬───────────────────┘ │ ┌──────────────┴───────────────────┐ │ Mem0 Core Library │ └──────────────┬───────────────────┘ │ ┌──────────┴──────────┐ │ │ ┌───┴──────┐ ┌──────┴─────┐ │ Supabase │ │ Neo4j │ │ (Vector) │ │ (Graph) │ └──────────┘ └────────────┘ ``` ### Storage Layers - **Vector Store (Supabase)**: Semantic similarity search with pgvector - **Graph Store (Neo4j)**: Relationship modeling between memories - **Key-Value Store (PostgreSQL JSONB)**: Flexible metadata storage ## Performance Based on mem0.ai research: - **26% higher accuracy** compared to baseline OpenAI - **91% lower latency** than full-context approaches - **90% token cost savings** through selective retrieval ## Use Cases Maintain context across conversations, remember user preferences, and provide personalized responses Give agents long-term memory, enable learning from past interactions, and improve decision-making Remember customer history, track issues across sessions, and provide consistent support Track learning progress, adapt to user knowledge level, and personalize content delivery ## Quick Links Get up and running in 5 minutes Understand the system design Explore the REST API Connect with Claude Code ## Technology Stack - **Core**: mem0ai library - **Vector DB**: Supabase with pgvector - **Graph DB**: Neo4j 5.x - **LLM**: OpenAI API (Phase 1), Ollama (Phase 2) - **REST API**: FastAPI + Pydantic - **MCP**: Python MCP SDK - **Container**: Docker & Docker Compose ## Support & Community - **Repository**: [git.colsys.tech/klas/t6_mem0_v2](https://git.colsys.tech/klas/t6_mem0_v2) - **mem0.ai**: [Official mem0 website](https://mem0.ai) - **Issues**: Contact maintainer --- Ready to get started? Continue to the [Quickstart Guide](/quickstart).