Add MCP HTTP/SSE server and complete n8n integration

Major Changes:
- Implemented MCP HTTP/SSE transport server for n8n and web clients
- Created mcp_server/http_server.py with FastAPI for JSON-RPC 2.0 over HTTP
- Added health check endpoint (/health) for container monitoring
- Refactored mcp-server/ to mcp_server/ (Python module structure)
- Updated Dockerfile.mcp to run HTTP server with health checks

MCP Server Features:
- 7 memory tools exposed via MCP (add, search, get, update, delete)
- HTTP/SSE transport on port 8765 for n8n integration
- stdio transport for Claude Code integration
- JSON-RPC 2.0 protocol implementation
- CORS support for web clients

n8n Integration:
- Successfully tested with AI Agent workflows
- MCP Client Tool configuration documented
- Working webhook endpoint tested and verified
- System prompt optimized for automatic user_id usage

Documentation:
- Created comprehensive Mintlify documentation site
- Added docs/mcp/introduction.mdx - MCP server overview
- Added docs/mcp/installation.mdx - Installation guide
- Added docs/mcp/tools.mdx - Complete tool reference
- Added docs/examples/n8n.mdx - n8n integration guide
- Added docs/examples/claude-code.mdx - Claude Code setup
- Updated README.md with MCP HTTP server info
- Updated roadmap to mark Phase 1 as complete

Bug Fixes:
- Fixed synchronized delete operations across Supabase and Neo4j
- Updated memory_service.py with proper error handling
- Fixed Neo4j connection issues in delete operations

Configuration:
- Added MCP_HOST and MCP_PORT environment variables
- Updated .env.example with MCP server configuration
- Updated docker-compose.yml with MCP container health checks

Testing:
- Added test scripts for MCP HTTP endpoint verification
- Created test workflows in n8n
- Verified all 7 memory tools working correctly
- Tested synchronized operations across both stores

Version: 1.0.0
Status: Phase 1 Complete - Production Ready

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Claude Code
2025-10-15 13:56:41 +02:00
parent 9bca2f4f47
commit 1998bef6f4
36 changed files with 3443 additions and 71 deletions

373
mcp_server/tools.py Normal file
View File

@@ -0,0 +1,373 @@
"""
MCP tools for T6 Mem0 v2
Tool definitions and handlers
"""
import logging
from typing import Any, Dict, List
from mcp.types import Tool, TextContent
from mem0 import Memory
from memory_cleanup import MemoryCleanup
logger = logging.getLogger(__name__)
class MemoryTools:
"""MCP tools for memory operations"""
def __init__(self, memory: Memory):
"""
Initialize memory tools
Args:
memory: Mem0 instance
"""
self.memory = memory
self.cleanup = MemoryCleanup(memory)
def get_tool_definitions(self) -> List[Tool]:
"""
Get MCP tool definitions
Returns:
List of Tool definitions
"""
return [
Tool(
name="add_memory",
description="Add new memory from messages. Extracts and stores important information from conversation.",
inputSchema={
"type": "object",
"properties": {
"messages": {
"type": "array",
"items": {
"type": "object",
"properties": {
"role": {"type": "string", "enum": ["user", "assistant", "system"]},
"content": {"type": "string"}
},
"required": ["role", "content"]
},
"description": "Conversation messages to extract memory from"
},
"user_id": {
"type": "string",
"description": "User identifier (optional)"
},
"agent_id": {
"type": "string",
"description": "Agent identifier (optional)"
},
"metadata": {
"type": "object",
"description": "Additional metadata (optional)"
}
},
"required": ["messages"]
}
),
Tool(
name="search_memories",
description="Search memories by semantic similarity. Find relevant memories based on a query.",
inputSchema={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query"
},
"user_id": {
"type": "string",
"description": "Filter by user ID (optional)"
},
"agent_id": {
"type": "string",
"description": "Filter by agent ID (optional)"
},
"limit": {
"type": "integer",
"minimum": 1,
"maximum": 50,
"default": 10,
"description": "Maximum number of results"
}
},
"required": ["query"]
}
),
Tool(
name="get_memory",
description="Get a specific memory by its ID",
inputSchema={
"type": "object",
"properties": {
"memory_id": {
"type": "string",
"description": "Memory identifier"
}
},
"required": ["memory_id"]
}
),
Tool(
name="get_all_memories",
description="Get all memories for a user or agent",
inputSchema={
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "User identifier (optional)"
},
"agent_id": {
"type": "string",
"description": "Agent identifier (optional)"
}
}
}
),
Tool(
name="update_memory",
description="Update an existing memory's content",
inputSchema={
"type": "object",
"properties": {
"memory_id": {
"type": "string",
"description": "Memory identifier"
},
"data": {
"type": "string",
"description": "New memory content"
}
},
"required": ["memory_id", "data"]
}
),
Tool(
name="delete_memory",
description="Delete a specific memory by ID",
inputSchema={
"type": "object",
"properties": {
"memory_id": {
"type": "string",
"description": "Memory identifier"
}
},
"required": ["memory_id"]
}
),
Tool(
name="delete_all_memories",
description="Delete all memories for a user or agent. Use with caution!",
inputSchema={
"type": "object",
"properties": {
"user_id": {
"type": "string",
"description": "User identifier (optional)"
},
"agent_id": {
"type": "string",
"description": "Agent identifier (optional)"
}
}
}
)
]
async def handle_add_memory(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle add_memory tool call"""
try:
messages = arguments.get("messages", [])
user_id = arguments.get("user_id")
agent_id = arguments.get("agent_id")
metadata = arguments.get("metadata", {})
result = self.memory.add(
messages=messages,
user_id=user_id,
agent_id=agent_id,
metadata=metadata
)
memories = result.get('results', [])
response = f"Successfully added {len(memories)} memory(ies):\n\n"
for mem in memories:
response += f"- {mem.get('memory', mem.get('data', 'N/A'))}\n"
response += f" ID: {mem.get('id', 'N/A')}\n\n"
return [TextContent(type="text", text=response)]
except Exception as e:
logger.error(f"Error adding memory: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]
async def handle_search_memories(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle search_memories tool call"""
try:
query = arguments.get("query")
user_id = arguments.get("user_id")
agent_id = arguments.get("agent_id")
limit = arguments.get("limit", 10)
result = self.memory.search(
query=query,
user_id=user_id,
agent_id=agent_id,
limit=limit
)
# In mem0 v0.1.118+, search returns dict with 'results' key
memories = result.get('results', []) if isinstance(result, dict) else result
if not memories:
return [TextContent(type="text", text="No memories found matching your query.")]
response = f"Found {len(memories)} relevant memory(ies):\n\n"
for i, mem in enumerate(memories, 1):
# Handle both string and dict responses
if isinstance(mem, str):
response += f"{i}. {mem}\n\n"
elif isinstance(mem, dict):
response += f"{i}. {mem.get('memory', mem.get('data', 'N/A'))}\n"
response += f" ID: {mem.get('id', 'N/A')}\n"
if 'score' in mem:
response += f" Relevance: {mem['score']:.2%}\n"
response += "\n"
else:
response += f"{i}. {str(mem)}\n\n"
return [TextContent(type="text", text=response)]
except Exception as e:
logger.error(f"Error searching memories: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]
async def handle_get_memory(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle get_memory tool call"""
try:
memory_id = arguments.get("memory_id")
memory = self.memory.get(memory_id=memory_id)
if not memory:
return [TextContent(type="text", text=f"Memory not found: {memory_id}")]
response = f"Memory Details:\n\n"
response += f"ID: {memory.get('id', 'N/A')}\n"
response += f"Content: {memory.get('memory', memory.get('data', 'N/A'))}\n"
if memory.get('user_id'):
response += f"User ID: {memory['user_id']}\n"
if memory.get('agent_id'):
response += f"Agent ID: {memory['agent_id']}\n"
if memory.get('metadata'):
response += f"Metadata: {memory['metadata']}\n"
return [TextContent(type="text", text=response)]
except Exception as e:
logger.error(f"Error getting memory: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]
async def handle_get_all_memories(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle get_all_memories tool call"""
try:
user_id = arguments.get("user_id")
agent_id = arguments.get("agent_id")
result = self.memory.get_all(
user_id=user_id,
agent_id=agent_id
)
# In mem0 v0.1.118+, get_all returns dict with 'results' key
memories = result.get('results', []) if isinstance(result, dict) else result
if not memories:
return [TextContent(type="text", text="No memories found.")]
response = f"Retrieved {len(memories)} memory(ies):\n\n"
for i, mem in enumerate(memories, 1):
# Handle both string and dict responses
if isinstance(mem, str):
response += f"{i}. {mem}\n\n"
elif isinstance(mem, dict):
response += f"{i}. {mem.get('memory', mem.get('data', 'N/A'))}\n"
response += f" ID: {mem.get('id', 'N/A')}\n\n"
else:
response += f"{i}. {str(mem)}\n\n"
return [TextContent(type="text", text=response)]
except Exception as e:
logger.error(f"Error getting all memories: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]
async def handle_update_memory(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle update_memory tool call"""
try:
memory_id = arguments.get("memory_id")
data = arguments.get("data")
result = self.memory.update(
memory_id=memory_id,
data=data
)
response = f"Memory updated successfully:\n\n"
response += f"ID: {result.get('id', memory_id)}\n"
response += f"New Content: {data}\n"
return [TextContent(type="text", text=response)]
except Exception as e:
logger.error(f"Error updating memory: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]
async def handle_delete_memory(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle delete_memory tool call"""
try:
memory_id = arguments.get("memory_id")
self.memory.delete(memory_id=memory_id)
return [TextContent(type="text", text=f"Memory {memory_id} deleted successfully.")]
except Exception as e:
logger.error(f"Error deleting memory: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]
async def handle_delete_all_memories(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""
Handle delete_all_memories tool call
IMPORTANT: Uses synchronized deletion to ensure both
Supabase (vector store) and Neo4j (graph store) are cleaned up.
"""
try:
user_id = arguments.get("user_id")
agent_id = arguments.get("agent_id")
# Use synchronized deletion to clean up both Supabase and Neo4j
result = self.cleanup.delete_all_synchronized(
user_id=user_id,
agent_id=agent_id
)
filter_str = f"user_id={user_id}" if user_id else f"agent_id={agent_id}" if agent_id else "all filters"
response = f"All memories deleted for {filter_str}.\n"
response += f"Supabase: {'' if result['supabase_success'] else ''}, "
response += f"Neo4j: {result['neo4j_nodes_deleted']} nodes deleted"
return [TextContent(type="text", text=response)]
except Exception as e:
logger.error(f"Error deleting all memories: {e}")
return [TextContent(type="text", text=f"Error: {str(e)}")]