Files
t6_mem0/embedchain/utils/misc.py
2024-06-21 08:57:21 -07:00

536 lines
20 KiB
Python

import datetime
import itertools
import json
import logging
import os
import re
import string
from typing import Any
from schema import Optional, Or, Schema
from tqdm import tqdm
from embedchain.models.data_type import DataType
logger = logging.getLogger(__name__)
def parse_content(content, type):
implemented = ["html.parser", "lxml", "lxml-xml", "xml", "html5lib"]
if type not in implemented:
raise ValueError(f"Parser type {type} not implemented. Please choose one of {implemented}")
from bs4 import BeautifulSoup
soup = BeautifulSoup(content, type)
original_size = len(str(soup.get_text()))
tags_to_exclude = [
"nav",
"aside",
"form",
"header",
"noscript",
"svg",
"canvas",
"footer",
"script",
"style",
]
for tag in soup(tags_to_exclude):
tag.decompose()
ids_to_exclude = ["sidebar", "main-navigation", "menu-main-menu"]
for id in ids_to_exclude:
tags = soup.find_all(id=id)
for tag in tags:
tag.decompose()
classes_to_exclude = [
"elementor-location-header",
"navbar-header",
"nav",
"header-sidebar-wrapper",
"blog-sidebar-wrapper",
"related-posts",
]
for class_name in classes_to_exclude:
tags = soup.find_all(class_=class_name)
for tag in tags:
tag.decompose()
content = soup.get_text()
content = clean_string(content)
cleaned_size = len(content)
if original_size != 0:
logger.info(
f"Cleaned page size: {cleaned_size} characters, down from {original_size} (shrunk: {original_size-cleaned_size} chars, {round((1-(cleaned_size/original_size)) * 100, 2)}%)" # noqa:E501
)
return content
def clean_string(text):
"""
This function takes in a string and performs a series of text cleaning operations.
Args:
text (str): The text to be cleaned. This is expected to be a string.
Returns:
cleaned_text (str): The cleaned text after all the cleaning operations
have been performed.
"""
# Stripping and reducing multiple spaces to single:
cleaned_text = re.sub(r"\s+", " ", text.strip())
# Removing backslashes:
cleaned_text = cleaned_text.replace("\\", "")
# Replacing hash characters:
cleaned_text = cleaned_text.replace("#", " ")
# Eliminating consecutive non-alphanumeric characters:
# This regex identifies consecutive non-alphanumeric characters (i.e., not
# a word character [a-zA-Z0-9_] and not a whitespace) in the string
# and replaces each group of such characters with a single occurrence of
# that character.
# For example, "!!! hello !!!" would become "! hello !".
cleaned_text = re.sub(r"([^\w\s])\1*", r"\1", cleaned_text)
return cleaned_text
def is_readable(s):
"""
Heuristic to determine if a string is "readable" (mostly contains printable characters and forms meaningful words)
:param s: string
:return: True if the string is more than 95% printable.
"""
len_s = len(s)
if len_s == 0:
return False
printable_chars = set(string.printable)
printable_ratio = sum(c in printable_chars for c in s) / len_s
return printable_ratio > 0.95 # 95% of characters are printable
def use_pysqlite3():
"""
Swap std-lib sqlite3 with pysqlite3.
"""
import platform
import sqlite3
if platform.system() == "Linux" and sqlite3.sqlite_version_info < (3, 35, 0):
try:
# According to the Chroma team, this patch only works on Linux
import datetime
import subprocess
import sys
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "pysqlite3-binary", "--quiet", "--disable-pip-version-check"]
)
__import__("pysqlite3")
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3")
# Let the user know what happened.
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S,%f")[:-3]
print(
f"{current_time} [embedchain] [INFO]",
"Swapped std-lib sqlite3 with pysqlite3 for ChromaDb compatibility.",
f"Your original version was {sqlite3.sqlite_version}.",
)
except Exception as e:
# Escape all exceptions
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S,%f")[:-3]
print(
f"{current_time} [embedchain] [ERROR]",
"Failed to swap std-lib sqlite3 with pysqlite3 for ChromaDb compatibility.",
"Error:",
e,
)
def format_source(source: str, limit: int = 20) -> str:
"""
Format a string to only take the first x and last x letters.
This makes it easier to display a URL, keeping familiarity while ensuring a consistent length.
If the string is too short, it is not sliced.
"""
if len(source) > 2 * limit:
return source[:limit] + "..." + source[-limit:]
return source
def detect_datatype(source: Any) -> DataType:
"""
Automatically detect the datatype of the given source.
:param source: the source to base the detection on
:return: data_type string
"""
from urllib.parse import urlparse
import requests
import yaml
def is_openapi_yaml(yaml_content):
# currently the following two fields are required in openapi spec yaml config
return "openapi" in yaml_content and "info" in yaml_content
def is_google_drive_folder(url):
# checks if url is a Google Drive folder url against a regex
regex = r"^drive\.google\.com\/drive\/(?:u\/\d+\/)folders\/([a-zA-Z0-9_-]+)$"
return re.match(regex, url)
try:
if not isinstance(source, str):
raise ValueError("Source is not a string and thus cannot be a URL.")
url = urlparse(source)
# Check if both scheme and netloc are present. Local file system URIs are acceptable too.
if not all([url.scheme, url.netloc]) and url.scheme != "file":
raise ValueError("Not a valid URL.")
except ValueError:
url = False
formatted_source = format_source(str(source), 30)
if url:
YOUTUBE_ALLOWED_NETLOCKS = {
"www.youtube.com",
"m.youtube.com",
"youtu.be",
"youtube.com",
"vid.plus",
"www.youtube-nocookie.com",
}
if url.netloc in YOUTUBE_ALLOWED_NETLOCKS:
logger.debug(f"Source of `{formatted_source}` detected as `youtube_video`.")
return DataType.YOUTUBE_VIDEO
if url.netloc in {"notion.so", "notion.site"}:
logger.debug(f"Source of `{formatted_source}` detected as `notion`.")
return DataType.NOTION
if url.path.endswith(".pdf"):
logger.debug(f"Source of `{formatted_source}` detected as `pdf_file`.")
return DataType.PDF_FILE
if url.path.endswith(".xml"):
logger.debug(f"Source of `{formatted_source}` detected as `sitemap`.")
return DataType.SITEMAP
if url.path.endswith(".csv"):
logger.debug(f"Source of `{formatted_source}` detected as `csv`.")
return DataType.CSV
if url.path.endswith(".mdx") or url.path.endswith(".md"):
logger.debug(f"Source of `{formatted_source}` detected as `mdx`.")
return DataType.MDX
if url.path.endswith(".docx"):
logger.debug(f"Source of `{formatted_source}` detected as `docx`.")
return DataType.DOCX
if url.path.endswith(
(".mp3", ".mp4", ".mp2", ".aac", ".wav", ".flac", ".pcm", ".m4a", ".ogg", ".opus", ".webm")
):
logger.debug(f"Source of `{formatted_source}` detected as `audio`.")
return DataType.AUDIO
if url.path.endswith(".yaml"):
try:
response = requests.get(source)
response.raise_for_status()
try:
yaml_content = yaml.safe_load(response.text)
except yaml.YAMLError as exc:
logger.error(f"Error parsing YAML: {exc}")
raise TypeError(f"Not a valid data type. Error loading YAML: {exc}")
if is_openapi_yaml(yaml_content):
logger.debug(f"Source of `{formatted_source}` detected as `openapi`.")
return DataType.OPENAPI
else:
logger.error(
f"Source of `{formatted_source}` does not contain all the required \
fields of OpenAPI yaml. Check 'https://spec.openapis.org/oas/v3.1.0'"
)
raise TypeError(
"Not a valid data type. Check 'https://spec.openapis.org/oas/v3.1.0', \
make sure you have all the required fields in YAML config data"
)
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching URL {formatted_source}: {e}")
if url.path.endswith(".json"):
logger.debug(f"Source of `{formatted_source}` detected as `json_file`.")
return DataType.JSON
if "docs" in url.netloc or ("docs" in url.path and url.scheme != "file"):
# `docs_site` detection via path is not accepted for local filesystem URIs,
# because that would mean all paths that contain `docs` are now doc sites, which is too aggressive.
logger.debug(f"Source of `{formatted_source}` detected as `docs_site`.")
return DataType.DOCS_SITE
if "github.com" in url.netloc:
logger.debug(f"Source of `{formatted_source}` detected as `github`.")
return DataType.GITHUB
if is_google_drive_folder(url.netloc + url.path):
logger.debug(f"Source of `{formatted_source}` detected as `google drive folder`.")
return DataType.GOOGLE_DRIVE_FOLDER
# If none of the above conditions are met, it's a general web page
logger.debug(f"Source of `{formatted_source}` detected as `web_page`.")
return DataType.WEB_PAGE
elif not isinstance(source, str):
# For datatypes where source is not a string.
if isinstance(source, tuple) and len(source) == 2 and isinstance(source[0], str) and isinstance(source[1], str):
logger.debug(f"Source of `{formatted_source}` detected as `qna_pair`.")
return DataType.QNA_PAIR
# Raise an error if it isn't a string and also not a valid non-string type (one of the previous).
# We could stringify it, but it is better to raise an error and let the user decide how they want to do that.
raise TypeError(
"Source is not a string and a valid non-string type could not be detected. If you want to embed it, please stringify it, for instance by using `str(source)` or `(', ').join(source)`." # noqa: E501
)
elif os.path.isfile(source):
# For datatypes that support conventional file references.
# Note: checking for string is not necessary anymore.
if source.endswith(".docx"):
logger.debug(f"Source of `{formatted_source}` detected as `docx`.")
return DataType.DOCX
if source.endswith(".csv"):
logger.debug(f"Source of `{formatted_source}` detected as `csv`.")
return DataType.CSV
if source.endswith(".xml"):
logger.debug(f"Source of `{formatted_source}` detected as `xml`.")
return DataType.XML
if source.endswith(".mdx") or source.endswith(".md"):
logger.debug(f"Source of `{formatted_source}` detected as `mdx`.")
return DataType.MDX
if source.endswith(".txt"):
logger.debug(f"Source of `{formatted_source}` detected as `text`.")
return DataType.TEXT_FILE
if source.endswith(".pdf"):
logger.debug(f"Source of `{formatted_source}` detected as `pdf_file`.")
return DataType.PDF_FILE
if source.endswith(".yaml"):
with open(source, "r") as file:
yaml_content = yaml.safe_load(file)
if is_openapi_yaml(yaml_content):
logger.debug(f"Source of `{formatted_source}` detected as `openapi`.")
return DataType.OPENAPI
else:
logger.error(
f"Source of `{formatted_source}` does not contain all the required \
fields of OpenAPI yaml. Check 'https://spec.openapis.org/oas/v3.1.0'"
)
raise ValueError(
"Invalid YAML data. Check 'https://spec.openapis.org/oas/v3.1.0', \
make sure to add all the required params"
)
if source.endswith(".json"):
logger.debug(f"Source of `{formatted_source}` detected as `json`.")
return DataType.JSON
if os.path.exists(source) and is_readable(open(source).read()):
logger.debug(f"Source of `{formatted_source}` detected as `text_file`.")
return DataType.TEXT_FILE
# If the source is a valid file, that's not detectable as a type, an error is raised.
# It does not fall back to text.
raise ValueError(
"Source points to a valid file, but based on the filename, no `data_type` can be detected. Please be aware, that not all data_types allow conventional file references, some require the use of the `file URI scheme`. Please refer to the embedchain documentation (https://docs.embedchain.ai/advanced/data_types#remote-data-types)." # noqa: E501
)
else:
# Source is not a URL.
# TODO: check if source is gmail query
# check if the source is valid json string
if is_valid_json_string(source):
logger.debug(f"Source of `{formatted_source}` detected as `json`.")
return DataType.JSON
# Use text as final fallback.
logger.debug(f"Source of `{formatted_source}` detected as `text`.")
return DataType.TEXT
# check if the source is valid json string
def is_valid_json_string(source: str):
try:
_ = json.loads(source)
return True
except json.JSONDecodeError:
return False
def validate_config(config_data):
schema = Schema(
{
Optional("app"): {
Optional("config"): {
Optional("id"): str,
Optional("name"): str,
Optional("log_level"): Or("DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"),
Optional("collect_metrics"): bool,
Optional("collection_name"): str,
}
},
Optional("llm"): {
Optional("provider"): Or(
"openai",
"azure_openai",
"anthropic",
"huggingface",
"cohere",
"together",
"gpt4all",
"ollama",
"jina",
"llama2",
"vertexai",
"google",
"aws_bedrock",
"mistralai",
"clarifai",
"vllm",
"groq",
"nvidia",
),
Optional("config"): {
Optional("model"): str,
Optional("model_name"): str,
Optional("number_documents"): int,
Optional("temperature"): float,
Optional("max_tokens"): int,
Optional("top_p"): Or(float, int),
Optional("stream"): bool,
Optional("online"): bool,
Optional("template"): str,
Optional("prompt"): str,
Optional("system_prompt"): str,
Optional("deployment_name"): str,
Optional("where"): dict,
Optional("query_type"): str,
Optional("api_key"): str,
Optional("base_url"): str,
Optional("endpoint"): str,
Optional("model_kwargs"): dict,
Optional("local"): bool,
Optional("base_url"): str,
Optional("default_headers"): dict,
Optional("api_version"): Or(str, datetime.date),
},
},
Optional("vectordb"): {
Optional("provider"): Or(
"chroma", "elasticsearch", "opensearch", "pinecone", "qdrant", "weaviate", "zilliz"
),
Optional("config"): object, # TODO: add particular config schema for each provider
},
Optional("embedder"): {
Optional("provider"): Or(
"openai",
"gpt4all",
"huggingface",
"vertexai",
"azure_openai",
"google",
"mistralai",
"clarifai",
"nvidia",
"ollama",
"cohere",
),
Optional("config"): {
Optional("model"): Optional(str),
Optional("deployment_name"): Optional(str),
Optional("api_key"): str,
Optional("api_base"): str,
Optional("title"): str,
Optional("task_type"): str,
Optional("vector_dimension"): int,
Optional("base_url"): str,
Optional("endpoint"): str,
},
},
Optional("embedding_model"): {
Optional("provider"): Or(
"openai",
"gpt4all",
"huggingface",
"vertexai",
"azure_openai",
"google",
"mistralai",
"clarifai",
"nvidia",
"ollama",
),
Optional("config"): {
Optional("model"): str,
Optional("deployment_name"): str,
Optional("api_key"): str,
Optional("title"): str,
Optional("task_type"): str,
Optional("vector_dimension"): int,
Optional("base_url"): str,
},
},
Optional("chunker"): {
Optional("chunk_size"): int,
Optional("chunk_overlap"): int,
Optional("length_function"): str,
Optional("min_chunk_size"): int,
},
Optional("cache"): {
Optional("similarity_evaluation"): {
Optional("strategy"): Or("distance", "exact"),
Optional("max_distance"): float,
Optional("positive"): bool,
},
Optional("config"): {
Optional("similarity_threshold"): float,
Optional("auto_flush"): int,
},
},
}
)
return schema.validate(config_data)
def chunks(iterable, batch_size=100, desc="Processing chunks"):
"""A helper function to break an iterable into chunks of size batch_size."""
it = iter(iterable)
total_size = len(iterable)
with tqdm(total=total_size, desc=desc, unit="batch") as pbar:
chunk = tuple(itertools.islice(it, batch_size))
while chunk:
yield chunk
pbar.update(len(chunk))
chunk = tuple(itertools.islice(it, batch_size))