Files
t6_mem0/embedchain/data_formatter/data_formatter.py

138 lines
6.9 KiB
Python

from importlib import import_module
from typing import Any, Dict
from embedchain.chunkers.base_chunker import BaseChunker
from embedchain.config import AddConfig
from embedchain.config.add_config import ChunkerConfig, LoaderConfig
from embedchain.helpers.json_serializable import JSONSerializable
from embedchain.loaders.base_loader import BaseLoader
from embedchain.models.data_type import DataType
class DataFormatter(JSONSerializable):
"""
DataFormatter is an internal utility class which abstracts the mapping for
loaders and chunkers to the data_type entered by the user in their
.add or .add_local method call
"""
def __init__(self, data_type: DataType, config: AddConfig, kwargs: Dict[str, Any]):
"""
Initialize a dataformatter, set data type and chunker based on datatype.
:param data_type: The type of the data to load and chunk.
:type data_type: DataType
:param config: AddConfig instance with nested loader and chunker config attributes.
:type config: AddConfig
"""
self.loader = self._get_loader(data_type=data_type, config=config.loader, kwargs=kwargs)
self.chunker = self._get_chunker(data_type=data_type, config=config.chunker, kwargs=kwargs)
def _lazy_load(self, module_path: str):
module_path, class_name = module_path.rsplit(".", 1)
module = import_module(module_path)
return getattr(module, class_name)
def _get_loader(self, data_type: DataType, config: LoaderConfig, kwargs: Dict[str, Any]) -> BaseLoader:
"""
Returns the appropriate data loader for the given data type.
:param data_type: The type of the data to load.
:type data_type: DataType
:param config: Config to initialize the loader with.
:type config: LoaderConfig
:raises ValueError: If an unsupported data type is provided.
:return: The loader for the given data type.
:rtype: BaseLoader
"""
loaders = {
DataType.YOUTUBE_VIDEO: "embedchain.loaders.youtube_video.YoutubeVideoLoader",
DataType.PDF_FILE: "embedchain.loaders.pdf_file.PdfFileLoader",
DataType.WEB_PAGE: "embedchain.loaders.web_page.WebPageLoader",
DataType.QNA_PAIR: "embedchain.loaders.local_qna_pair.LocalQnaPairLoader",
DataType.TEXT: "embedchain.loaders.local_text.LocalTextLoader",
DataType.DOCX: "embedchain.loaders.docx_file.DocxFileLoader",
DataType.SITEMAP: "embedchain.loaders.sitemap.SitemapLoader",
DataType.XML: "embedchain.loaders.xml.XmlLoader",
DataType.DOCS_SITE: "embedchain.loaders.docs_site_loader.DocsSiteLoader",
DataType.CSV: "embedchain.loaders.csv.CsvLoader",
DataType.MDX: "embedchain.loaders.mdx.MdxLoader",
DataType.IMAGES: "embedchain.loaders.images.ImagesLoader",
DataType.UNSTRUCTURED: "embedchain.loaders.unstructured_file.UnstructuredLoader",
DataType.JSON: "embedchain.loaders.json.JSONLoader",
DataType.OPENAPI: "embedchain.loaders.openapi.OpenAPILoader",
DataType.GMAIL: "embedchain.loaders.gmail.GmailLoader",
DataType.NOTION: "embedchain.loaders.notion.NotionLoader",
DataType.SUBSTACK: "embedchain.loaders.substack.SubstackLoader",
DataType.GITHUB: "embedchain.loaders.github.GithubLoader",
DataType.YOUTUBE_CHANNEL: "embedchain.loaders.youtube_channel.YoutubeChannelLoader",
}
custom_loaders = set(
[
DataType.POSTGRES,
DataType.MYSQL,
DataType.SLACK,
DataType.DISCOURSE,
]
)
if data_type in loaders:
loader_class: type = self._lazy_load(loaders[data_type])
return loader_class()
elif data_type in custom_loaders:
loader_class: type = kwargs.get("loader", None)
if loader_class is not None:
return loader_class
raise ValueError(
f"Cant find the loader for {data_type}.\
We recommend to pass the loader to use data_type: {data_type},\
check `https://docs.embedchain.ai/data-sources/overview`."
)
def _get_chunker(self, data_type: DataType, config: ChunkerConfig, kwargs: Dict[str, Any]) -> BaseChunker:
"""Returns the appropriate chunker for the given data type (updated for lazy loading)."""
chunker_classes = {
DataType.YOUTUBE_VIDEO: "embedchain.chunkers.youtube_video.YoutubeVideoChunker",
DataType.PDF_FILE: "embedchain.chunkers.pdf_file.PdfFileChunker",
DataType.WEB_PAGE: "embedchain.chunkers.web_page.WebPageChunker",
DataType.QNA_PAIR: "embedchain.chunkers.qna_pair.QnaPairChunker",
DataType.TEXT: "embedchain.chunkers.text.TextChunker",
DataType.DOCX: "embedchain.chunkers.docx_file.DocxFileChunker",
DataType.SITEMAP: "embedchain.chunkers.sitemap.SitemapChunker",
DataType.XML: "embedchain.chunkers.xml.XmlChunker",
DataType.DOCS_SITE: "embedchain.chunkers.docs_site.DocsSiteChunker",
DataType.CSV: "embedchain.chunkers.table.TableChunker",
DataType.MDX: "embedchain.chunkers.mdx.MdxChunker",
DataType.IMAGES: "embedchain.chunkers.images.ImagesChunker",
DataType.UNSTRUCTURED: "embedchain.chunkers.unstructured_file.UnstructuredFileChunker",
DataType.JSON: "embedchain.chunkers.json.JSONChunker",
DataType.OPENAPI: "embedchain.chunkers.openapi.OpenAPIChunker",
DataType.GMAIL: "embedchain.chunkers.gmail.GmailChunker",
DataType.NOTION: "embedchain.chunkers.notion.NotionChunker",
DataType.POSTGRES: "embedchain.chunkers.postgres.PostgresChunker",
DataType.MYSQL: "embedchain.chunkers.mysql.MySQLChunker",
DataType.SLACK: "embedchain.chunkers.slack.SlackChunker",
DataType.DISCOURSE: "embedchain.chunkers.discourse.DiscourseChunker",
DataType.SUBSTACK: "embedchain.chunkers.substack.SubstackChunker",
DataType.GITHUB: "embedchain.chunkers.common_chunker.CommonChunker",
DataType.YOUTUBE_CHANNEL: "embedchain.chunkers.common_chunker.CommonChunker",
}
if data_type in chunker_classes:
if "chunker" in kwargs:
chunker_class = kwargs.get("chunker")
else:
chunker_class = self._lazy_load(chunker_classes[data_type])
chunker = chunker_class(config)
chunker.set_data_type(data_type)
return chunker
else:
raise ValueError(
f"Cant find the chunker for {data_type}.\
We recommend to pass the chunker to use data_type: {data_type},\
check `https://docs.embedchain.ai/data-sources/overview`."
)