Files
t6_mem0/docs/components/vectordbs/dbs/pgvector.mdx
2025-01-16 12:33:56 +05:30

41 lines
1.4 KiB
Plaintext

[pgvector](https://github.com/pgvector/pgvector) is open-source vector similarity search for Postgres. After connecting with postgres run `CREATE EXTENSION IF NOT EXISTS vector;` to create the vector extension.
### Usage
```python
import os
from mem0 import Memory
os.environ["OPENAI_API_KEY"] = "sk-xx"
config = {
"vector_store": {
"provider": "pgvector",
"config": {
"user": "test",
"password": "123",
"host": "127.0.0.1",
"port": "5432",
}
}
}
m = Memory.from_config(config)
m.add("Likes to play cricket on weekends", user_id="alice", metadata={"category": "hobbies"})
```
### Config
Here's the parameters available for configuring pgvector:
| Parameter | Description | Default Value |
| --- | --- | --- |
| `dbname` | The name of the | `postgres` |
| `collection_name` | The name of the collection | `mem0` |
| `embedding_model_dims` | Dimensions of the embedding model | `1536` |
| `user` | User name to connect to the database | `None` |
| `password` | Password to connect to the database | `None` |
| `host` | The host where the Postgres server is running | `None` |
| `port` | The port where the Postgres server is running | `None` |
| `diskann` | Whether to use diskann for vector similarity search (requires pgvectorscale) | `True` |
| `hnsw` | Whether to use hnsw for vector similarity search | `False` |