Files
t6_mem0/mem0/llms/ollama.py
2025-03-14 17:42:48 +05:30

71 lines
2.2 KiB
Python

from typing import Dict, List, Optional
try:
from ollama import Client
except ImportError:
raise ImportError(
"The 'ollama' library is required. Please install it using 'pip install ollama'."
)
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class OllamaLLM(LLMBase):
"""
A class for interacting with Ollama's language models using the specified configuration.
"""
def __init__(self, config: Optional[BaseLlmConfig] = None):
"""
Initializes the OllamaLLM instance with the given configuration.
Args:
config (Optional[BaseLlmConfig]): Configuration settings for the language model.
"""
super().__init__(config)
if not self.config.model:
self.config.model = "llama3.1:70b"
self.client = Client(host=self.config.ollama_base_url)
self._ensure_model_exists()
def _ensure_model_exists(self):
"""
Ensures the specified model exists locally. If not, pulls it from Ollama.
"""
local_models = self.client.list()["models"]
if not any(model.get("name") == self.config.model for model in local_models):
self.client.pull(self.config.model)
def generate_response(
self,
messages: List[Dict[str, str]],
response_format: Optional[str] = None,
) -> str:
"""
Generates a response using Ollama based on the provided messages.
Args:
messages (List[Dict[str, str]]): A list of dictionaries, each containing a 'role' and 'content' key.
response_format (Optional[str]): The desired format of the response. Defaults to None.
Returns:
str: The generated response from the model.
"""
params = {
"model": self.config.model,
"messages": messages,
"options": {
"temperature": self.config.temperature,
"num_predict": self.config.max_tokens,
"top_p": self.config.top_p,
},
}
if response_format:
params["format"] = "json"
response = self.client.chat(**params)
return response["message"]["content"]