Files
t6_mem0/examples/chat-pdf/app.py
Deven Patel 9fe80c5cca [App Deployment] create chat with PDF app (#1049)
Co-authored-by: Deven Patel <deven298@yahoo.com>
Co-authored-by: Deshraj Yadav <deshrajdry@gmail.com>
2023-12-22 19:53:10 +05:30

151 lines
5.4 KiB
Python

import os
import queue
import re
import tempfile
import threading
import streamlit as st
from embedchain import Pipeline as App
from embedchain.config import BaseLlmConfig
from embedchain.helpers.callbacks import (StreamingStdOutCallbackHandlerYield,
generate)
@st.cache_resource
def embedchain_bot():
return App.from_config(
config={
"llm": {
"provider": "openai",
"config": {
"model": "gpt-3.5-turbo-1106",
"temperature": 0.5,
"max_tokens": 1000,
"top_p": 1,
"stream": True,
},
},
"vectordb": {
"provider": "chroma",
"config": {"collection_name": "chat-pdf", "dir": "db", "allow_reset": True},
},
"chunker": {"chunk_size": 2000, "chunk_overlap": 0, "length_function": "len"},
}
)
@st.cache_data
def update_openai_key():
os.environ["OPENAI_API_KEY"] = st.session_state.chatbot_api_key
with st.sidebar:
openai_access_token = st.text_input(
"OpenAI API Key", value=os.environ.get("OPENAI_API_KEY"), key="chatbot_api_key", type="password"
) # noqa: E501
"WE DO NOT STORE YOUR OPENAI KEY."
"Just paste your OpenAI API key here and we'll use it to power the chatbot. [Get your OpenAI API key](https://platform.openai.com/api-keys)" # noqa: E501
if openai_access_token:
update_openai_key()
pdf_files = st.file_uploader("Upload your PDF files", accept_multiple_files=True, type="pdf")
add_pdf_files = st.session_state.get("add_pdf_files", [])
for pdf_file in pdf_files:
file_name = pdf_file.name
if file_name in add_pdf_files:
continue
try:
if not os.environ.get("OPENAI_API_KEY"):
st.error("Please enter your OpenAI API Key")
st.stop()
app = embedchain_bot()
temp_file_name = None
with tempfile.NamedTemporaryFile(mode="wb", delete=False, prefix=file_name, suffix=".pdf") as f:
f.write(pdf_file.getvalue())
temp_file_name = f.name
if temp_file_name:
st.markdown(f"Adding {file_name} to knowledge base...")
app.add(temp_file_name, data_type="pdf_file")
st.markdown("")
add_pdf_files.append(file_name)
os.remove(temp_file_name)
st.session_state.messages.append({"role": "assistant", "content": f"Added {file_name} to knowledge base!"})
except Exception as e:
st.error(f"Error adding {file_name} to knowledge base: {e}")
st.stop()
st.session_state["add_pdf_files"] = add_pdf_files
st.title("📄 Embedchain - Chat with PDF")
styled_caption = '<p style="font-size: 17px; color: #aaa;">🚀 An <a href="https://github.com/embedchain/embedchain">Embedchain</a> app powered by OpenAI!</p>' # noqa: E501
st.markdown(styled_caption, unsafe_allow_html=True)
if "messages" not in st.session_state:
st.session_state.messages = [
{
"role": "assistant",
"content": """
Hi! I'm chatbot powered by Embedchain, which can answer questions about your pdf documents.\n
Upload your pdf documents here and I'll answer your questions about them!
""",
}
]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask me anything!"):
if not os.environ.get("OPENAI_API_KEY"):
st.error("Please enter your OpenAI API Key", icon="🤖")
st.stop()
app = embedchain_bot()
with st.chat_message("user"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.markdown(prompt)
with st.chat_message("assistant"):
msg_placeholder = st.empty()
msg_placeholder.markdown("Thinking...")
full_response = ""
q = queue.Queue()
def app_response(result):
llm_config = app.llm.config.as_dict()
llm_config["callbacks"] = [StreamingStdOutCallbackHandlerYield(q=q)]
config = BaseLlmConfig(**llm_config)
answer, citations = app.chat(prompt, config=config, citations=True)
result["answer"] = answer
result["citations"] = citations
results = {}
thread = threading.Thread(target=app_response, args=(results,))
thread.start()
for answer_chunk in generate(q):
full_response += answer_chunk
msg_placeholder.markdown(full_response)
thread.join()
answer, citations = results["answer"], results["citations"]
if citations:
full_response += "\n\n**Sources**:\n"
sources = []
for i, citation in enumerate(citations):
source = citation[1]
pattern = re.compile(r"([^/]+)\.[^\.]+\.pdf$")
match = pattern.search(source)
if match:
source = match.group(1) + ".pdf"
sources.append(source)
sources = list(set(sources))
for source in sources:
full_response += f"- {source}\n"
msg_placeholder.markdown(full_response)
print("Answer: ", answer)
st.session_state.messages.append({"role": "assistant", "content": answer})