Files
t6_mem0/tests/embeddings/test_lm_studio_embeddings.py
2025-03-24 13:32:26 +05:30

42 lines
1.5 KiB
Python

import pytest
from unittest.mock import Mock, patch
from mem0.embeddings.lmstudio import LMStudioEmbedding
from mem0.configs.embeddings.base import BaseEmbedderConfig
@pytest.fixture
def mock_lm_studio_client():
with patch("mem0.embeddings.lmstudio.Client") as mock_lm_studio:
mock_client = Mock()
mock_client.list.return_value = {"models": [{"name": "nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf"}]}
mock_lm_studio.return_value = mock_client
yield mock_client
def test_embed_text(mock_lm_studio_client):
config = BaseEmbedderConfig(model="nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf", embedding_dims=512)
embedder = LMStudioEmbedding(config)
mock_response = {"embedding": [0.1, 0.2, 0.3, 0.4, 0.5]}
mock_lm_studio_client.embeddings.return_value = mock_response
text = "Sample text to embed."
embedding = embedder.embed(text)
mock_lm_studio_client.embeddings.assert_called_once_with(model="nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf", prompt=text)
assert embedding == [0.1, 0.2, 0.3, 0.4, 0.5]
def test_ensure_model_exists(mock_lm_studio_client):
config = BaseEmbedderConfig(model="nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf", embedding_dims=512)
embedder = LMStudioEmbedding(config)
mock_lm_studio_client.pull.assert_not_called()
mock_lm_studio_client.list.return_value = {"models": []}
embedder._ensure_model_exists()
mock_lm_studio_client.pull.assert_called_once_with("nomic-embed-text")