Files
t6_mem0/mem0/llms/lmstudio.py
2025-03-24 13:32:26 +05:30

48 lines
1.7 KiB
Python

from typing import Dict, List, Optional
from openai import OpenAI
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class LMStudioLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "lmstudio-community/Meta-Llama-3.1-70B-Instruct-GGUF/Meta-Llama-3.1-70B-Instruct-IQ2_M.gguf"
self.config.api_key = self.config.api_key or "lm-studio"
self.client = OpenAI(base_url=self.config.lmstudio_base_url, api_key=self.config.api_key)
def generate_response(
self,
messages: List[Dict[str, str]],
response_format: dict = {"type": "json_object"},
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto"
):
"""
Generate a response based on the given messages using LM Studio.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p
}
if response_format:
params["response_format"] = response_format
response = self.client.chat.completions.create(**params)
return response.choices[0].message.content