Files
t6_mem0/mem0/embeddings/lmstudio.py
2025-03-24 13:32:26 +05:30

33 lines
1.3 KiB
Python

from typing import Literal, Optional
from openai import OpenAI
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class LMStudioEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.f16.gguf"
self.config.embedding_dims = self.config.embedding_dims or 1536
self.config.api_key = self.config.api_key or "lm-studio"
self.client = OpenAI(base_url=self.config.lmstudio_base_url, api_key=self.config.api_key)
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using LM Studio.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
text = text.replace("\n", " ")
return (
self.client.embeddings.create(input=[text], model=self.config.model)
.data[0]
.embedding
)