36 lines
1.2 KiB
Python
36 lines
1.2 KiB
Python
from typing import Literal, Optional
|
|
|
|
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
|
from mem0.embeddings.base import EmbeddingBase
|
|
|
|
try:
|
|
from langchain.embeddings.base import Embeddings
|
|
except ImportError:
|
|
raise ImportError("langchain is not installed. Please install it using `pip install langchain`")
|
|
|
|
|
|
class LangchainEmbedding(EmbeddingBase):
|
|
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
|
super().__init__(config)
|
|
|
|
if self.config.model is None:
|
|
raise ValueError("`model` parameter is required")
|
|
|
|
if not isinstance(self.config.model, Embeddings):
|
|
raise ValueError("`model` must be an instance of Embeddings")
|
|
|
|
self.langchain_model = self.config.model
|
|
|
|
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
|
|
"""
|
|
Get the embedding for the given text using Langchain.
|
|
|
|
Args:
|
|
text (str): The text to embed.
|
|
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
|
|
Returns:
|
|
list: The embedding vector.
|
|
"""
|
|
|
|
return self.langchain_model.embed_query(text)
|