Files
t6_mem0/mem0/vector_stores/redis.py

296 lines
11 KiB
Python

import json
import logging
from datetime import datetime
from functools import reduce
import numpy as np
import pytz
import redis
from redis.commands.search.query import Query
from redisvl.index import SearchIndex
from redisvl.query import VectorQuery
from redisvl.query.filter import Tag
from mem0.memory.utils import extract_json
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
# TODO: Improve as these are not the best fields for the Redis's perspective. Might do away with them.
DEFAULT_FIELDS = [
{"name": "memory_id", "type": "tag"},
{"name": "hash", "type": "tag"},
{"name": "agent_id", "type": "tag"},
{"name": "run_id", "type": "tag"},
{"name": "user_id", "type": "tag"},
{"name": "memory", "type": "text"},
{"name": "metadata", "type": "text"},
# TODO: Although it is numeric but also accepts string
{"name": "created_at", "type": "numeric"},
{"name": "updated_at", "type": "numeric"},
{
"name": "embedding",
"type": "vector",
"attrs": {"distance_metric": "cosine", "algorithm": "flat", "datatype": "float32"},
},
]
excluded_keys = {"user_id", "agent_id", "run_id", "hash", "data", "created_at", "updated_at"}
class MemoryResult:
def __init__(self, id: str, payload: dict, score: float = None):
self.id = id
self.payload = payload
self.score = score
class RedisDB(VectorStoreBase):
def __init__(
self,
redis_url: str,
collection_name: str,
embedding_model_dims: int,
):
"""
Initialize the Redis vector store.
Args:
redis_url (str): Redis URL.
collection_name (str): Collection name.
embedding_model_dims (int): Embedding model dimensions.
"""
self.embedding_model_dims = embedding_model_dims
index_schema = {
"name": collection_name,
"prefix": f"mem0:{collection_name}",
}
fields = DEFAULT_FIELDS.copy()
fields[-1]["attrs"]["dims"] = embedding_model_dims
self.schema = {"index": index_schema, "fields": fields}
self.client = redis.Redis.from_url(redis_url)
self.index = SearchIndex.from_dict(self.schema)
self.index.set_client(self.client)
self.index.create(overwrite=True)
def create_col(self, name=None, vector_size=None, distance=None):
"""
Create a new collection (index) in Redis.
Args:
name (str, optional): Name for the collection. Defaults to None, which uses the current collection_name.
vector_size (int, optional): Size of the vector embeddings. Defaults to None, which uses the current embedding_model_dims.
distance (str, optional): Distance metric to use. Defaults to None, which uses 'cosine'.
Returns:
The created index object.
"""
# Use provided parameters or fall back to instance attributes
collection_name = name or self.schema["index"]["name"]
embedding_dims = vector_size or self.embedding_model_dims
distance_metric = distance or "cosine"
# Create a new schema with the specified parameters
index_schema = {
"name": collection_name,
"prefix": f"mem0:{collection_name}",
}
# Copy the default fields and update the vector field with the specified dimensions
fields = DEFAULT_FIELDS.copy()
fields[-1]["attrs"]["dims"] = embedding_dims
fields[-1]["attrs"]["distance_metric"] = distance_metric
# Create the schema
schema = {"index": index_schema, "fields": fields}
# Create the index
index = SearchIndex.from_dict(schema)
index.set_client(self.client)
index.create(overwrite=True)
# Update instance attributes if creating a new collection
if name:
self.schema = schema
self.index = index
return index
def insert(self, vectors: list, payloads: list = None, ids: list = None):
data = []
for vector, payload, id in zip(vectors, payloads, ids):
# Start with required fields
entry = {
"memory_id": id,
"hash": payload["hash"],
"memory": payload["data"],
"created_at": int(datetime.fromisoformat(payload["created_at"]).timestamp()),
"embedding": np.array(vector, dtype=np.float32).tobytes(),
}
# Conditionally add optional fields
for field in ["agent_id", "run_id", "user_id"]:
if field in payload:
entry[field] = payload[field]
# Add metadata excluding specific keys
entry["metadata"] = json.dumps({k: v for k, v in payload.items() if k not in excluded_keys})
data.append(entry)
self.index.load(data, id_field="memory_id")
def search(self, query: str, vectors: list, limit: int = 5, filters: dict = None):
conditions = [Tag(key) == value for key, value in filters.items() if value is not None]
filter = reduce(lambda x, y: x & y, conditions)
v = VectorQuery(
vector=np.array(vectors, dtype=np.float32).tobytes(),
vector_field_name="embedding",
return_fields=["memory_id", "hash", "agent_id", "run_id", "user_id", "memory", "metadata", "created_at"],
filter_expression=filter,
num_results=limit,
)
results = self.index.query(v)
return [
MemoryResult(
id=result["memory_id"],
score=result["vector_distance"],
payload={
"hash": result["hash"],
"data": result["memory"],
"created_at": datetime.fromtimestamp(
int(result["created_at"]), tz=pytz.timezone("US/Pacific")
).isoformat(timespec="microseconds"),
**(
{
"updated_at": datetime.fromtimestamp(
int(result["updated_at"]), tz=pytz.timezone("US/Pacific")
).isoformat(timespec="microseconds")
}
if "updated_at" in result
else {}
),
**{field: result[field] for field in ["agent_id", "run_id", "user_id"] if field in result},
**{k: v for k, v in json.loads(extract_json(result["metadata"])).items()},
},
)
for result in results
]
def delete(self, vector_id):
self.index.drop_keys(f"{self.schema['index']['prefix']}:{vector_id}")
def update(self, vector_id=None, vector=None, payload=None):
data = {
"memory_id": vector_id,
"hash": payload["hash"],
"memory": payload["data"],
"created_at": int(datetime.fromisoformat(payload["created_at"]).timestamp()),
"updated_at": int(datetime.fromisoformat(payload["updated_at"]).timestamp()),
"embedding": np.array(vector, dtype=np.float32).tobytes(),
}
for field in ["agent_id", "run_id", "user_id"]:
if field in payload:
data[field] = payload[field]
data["metadata"] = json.dumps({k: v for k, v in payload.items() if k not in excluded_keys})
self.index.load(data=[data], keys=[f"{self.schema['index']['prefix']}:{vector_id}"], id_field="memory_id")
def get(self, vector_id):
result = self.index.fetch(vector_id)
payload = {
"hash": result["hash"],
"data": result["memory"],
"created_at": datetime.fromtimestamp(int(result["created_at"]), tz=pytz.timezone("US/Pacific")).isoformat(
timespec="microseconds"
),
**(
{
"updated_at": datetime.fromtimestamp(
int(result["updated_at"]), tz=pytz.timezone("US/Pacific")
).isoformat(timespec="microseconds")
}
if "updated_at" in result
else {}
),
**{field: result[field] for field in ["agent_id", "run_id", "user_id"] if field in result},
**{k: v for k, v in json.loads(extract_json(result["metadata"])).items()},
}
return MemoryResult(id=result["memory_id"], payload=payload)
def list_cols(self):
return self.index.listall()
def delete_col(self):
self.index.delete()
def col_info(self, name):
return self.index.info()
def reset(self):
"""
Reset the index by deleting and recreating it.
"""
collection_name = self.schema["index"]["name"]
logger.warning(f"Resetting index {collection_name}...")
self.delete_col()
self.index = SearchIndex.from_dict(self.schema)
self.index.set_client(self.client)
self.index.create(overwrite=True)
# or use
# self.create_col(collection_name, self.embedding_model_dims)
# Recreate the index with the same parameters
self.create_col(collection_name, self.embedding_model_dims)
def list(self, filters: dict = None, limit: int = None) -> list:
"""
List all recent created memories from the vector store.
"""
conditions = [Tag(key) == value for key, value in filters.items() if value is not None]
filter = reduce(lambda x, y: x & y, conditions)
query = Query(str(filter)).sort_by("created_at", asc=False)
if limit is not None:
query = Query(str(filter)).sort_by("created_at", asc=False).paging(0, limit)
results = self.index.search(query)
return [
[
MemoryResult(
id=result["memory_id"],
payload={
"hash": result["hash"],
"data": result["memory"],
"created_at": datetime.fromtimestamp(
int(result["created_at"]), tz=pytz.timezone("US/Pacific")
).isoformat(timespec="microseconds"),
**(
{
"updated_at": datetime.fromtimestamp(
int(result["updated_at"]), tz=pytz.timezone("US/Pacific")
).isoformat(timespec="microseconds")
}
if result.__dict__.get("updated_at")
else {}
),
**{
field: result[field]
for field in ["agent_id", "run_id", "user_id"]
if field in result.__dict__
},
**{k: v for k, v in json.loads(extract_json(result["metadata"])).items()},
},
)
for result in results.docs
]
]