101 lines
3.4 KiB
Python
101 lines
3.4 KiB
Python
import json
|
|
import os
|
|
from typing import Literal, Optional
|
|
|
|
try:
|
|
import boto3
|
|
except ImportError:
|
|
raise ImportError("The 'boto3' library is required. Please install it using 'pip install boto3'.")
|
|
|
|
import numpy as np
|
|
|
|
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
|
from mem0.embeddings.base import EmbeddingBase
|
|
|
|
|
|
class AWSBedrockEmbedding(EmbeddingBase):
|
|
"""AWS Bedrock embedding implementation.
|
|
|
|
This class uses AWS Bedrock's embedding models.
|
|
"""
|
|
|
|
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
|
super().__init__(config)
|
|
|
|
self.config.model = self.config.model or "amazon.titan-embed-text-v1"
|
|
|
|
# Get AWS config from environment variables or use defaults
|
|
aws_access_key = os.environ.get("AWS_ACCESS_KEY_ID", "")
|
|
aws_secret_key = os.environ.get("AWS_SECRET_ACCESS_KEY", "")
|
|
aws_session_token = os.environ.get("AWS_SESSION_TOKEN", "")
|
|
aws_region = os.environ.get("AWS_REGION", "us-west-2")
|
|
|
|
# Check if AWS config is provided in the config
|
|
if hasattr(self.config, "aws_access_key_id"):
|
|
aws_access_key = self.config.aws_access_key_id
|
|
if hasattr(self.config, "aws_secret_access_key"):
|
|
aws_secret_key = self.config.aws_secret_access_key
|
|
if hasattr(self.config, "aws_region"):
|
|
aws_region = self.config.aws_region
|
|
|
|
self.client = boto3.client(
|
|
"bedrock-runtime",
|
|
region_name=aws_region,
|
|
aws_access_key_id=aws_access_key if aws_access_key else None,
|
|
aws_secret_access_key=aws_secret_key if aws_secret_key else None,
|
|
aws_session_token=aws_session_token if aws_session_token else None,
|
|
)
|
|
|
|
def _normalize_vector(self, embeddings):
|
|
"""Normalize the embedding to a unit vector."""
|
|
emb = np.array(embeddings)
|
|
norm_emb = emb / np.linalg.norm(emb)
|
|
return norm_emb.tolist()
|
|
|
|
def _get_embedding(self, text):
|
|
"""Call out to Bedrock embedding endpoint."""
|
|
|
|
# Format input body based on the provider
|
|
provider = self.config.model.split(".")[0]
|
|
input_body = {}
|
|
|
|
if provider == "cohere":
|
|
input_body["input_type"] = "search_document"
|
|
input_body["texts"] = [text]
|
|
else:
|
|
# Amazon and other providers
|
|
input_body["inputText"] = text
|
|
|
|
body = json.dumps(input_body)
|
|
|
|
try:
|
|
response = self.client.invoke_model(
|
|
body=body,
|
|
modelId=self.config.model,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
|
|
response_body = json.loads(response.get("body").read())
|
|
|
|
if provider == "cohere":
|
|
embeddings = response_body.get("embeddings")[0]
|
|
else:
|
|
embeddings = response_body.get("embedding")
|
|
|
|
return embeddings
|
|
except Exception as e:
|
|
raise ValueError(f"Error getting embedding from AWS Bedrock: {e}")
|
|
|
|
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
|
|
"""
|
|
Get the embedding for the given text using AWS Bedrock.
|
|
|
|
Args:
|
|
text (str): The text to embed.
|
|
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
|
|
Returns:
|
|
list: The embedding vector.
|
|
"""
|
|
return self._get_embedding(text)
|