Files
t6_mem0/embedchain/vectordb/opensearch.py

255 lines
9.3 KiB
Python

import logging
import time
from typing import Any, Optional, Union
from tqdm import tqdm
try:
from opensearchpy import OpenSearch
from opensearchpy.helpers import bulk
except ImportError:
raise ImportError(
"OpenSearch requires extra dependencies. Install with `pip install --upgrade embedchain[opensearch]`"
) from None
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores import OpenSearchVectorSearch
from embedchain.config import OpenSearchDBConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.vectordb.base import BaseVectorDB
logger = logging.getLogger(__name__)
@register_deserializable
class OpenSearchDB(BaseVectorDB):
"""
OpenSearch as vector database
"""
BATCH_SIZE = 100
def __init__(self, config: OpenSearchDBConfig):
"""OpenSearch as vector database.
:param config: OpenSearch domain config
:type config: OpenSearchDBConfig
"""
if config is None:
raise ValueError("OpenSearchDBConfig is required")
self.config = config
self.client = OpenSearch(
hosts=[self.config.opensearch_url],
http_auth=self.config.http_auth,
**self.config.extra_params,
)
info = self.client.info()
logger.info(f"Connected to {info['version']['distribution']}. Version: {info['version']['number']}")
# Remove auth credentials from config after successful connection
super().__init__(config=self.config)
def _initialize(self):
logger.info(self.client.info())
index_name = self._get_index()
if self.client.indices.exists(index=index_name):
print(f"Index '{index_name}' already exists.")
return
index_body = {
"settings": {"knn": True},
"mappings": {
"properties": {
"text": {"type": "text"},
"embeddings": {
"type": "knn_vector",
"index": False,
"dimension": self.config.vector_dimension,
},
}
},
}
self.client.indices.create(index_name, body=index_body)
print(self.client.indices.get(index_name))
def _get_or_create_db(self):
"""Called during initialization"""
return self.client
def _get_or_create_collection(self, name):
"""Note: nothing to return here. Discuss later"""
def get(
self, ids: Optional[list[str]] = None, where: Optional[dict[str, any]] = None, limit: Optional[int] = None
) -> set[str]:
"""
Get existing doc ids present in vector database
:param ids: _list of doc ids to check for existence
:type ids: list[str]
:param where: to filter data
:type where: dict[str, any]
:return: ids
:type: set[str]
"""
query = {}
if ids:
query["query"] = {"bool": {"must": [{"ids": {"values": ids}}]}}
else:
query["query"] = {"bool": {"must": []}}
if where:
for key, value in where.items():
query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
# OpenSearch syntax is different from Elasticsearch
response = self.client.search(index=self._get_index(), body=query, _source=True, size=limit)
docs = response["hits"]["hits"]
ids = [doc["_id"] for doc in docs]
doc_ids = [doc["_source"]["metadata"]["doc_id"] for doc in docs]
# Result is modified for compatibility with other vector databases
# TODO: Add method in vector database to return result in a standard format
result = {"ids": ids, "metadatas": []}
for doc_id in doc_ids:
result["metadatas"].append({"doc_id": doc_id})
return result
def add(self, documents: list[str], metadatas: list[object], ids: list[str], **kwargs: Optional[dict[str, any]]):
"""Adds documents to the opensearch index"""
embeddings = self.embedder.embedding_fn(documents)
for batch_start in tqdm(range(0, len(documents), self.BATCH_SIZE), desc="Inserting batches in opensearch"):
batch_end = batch_start + self.BATCH_SIZE
batch_documents = documents[batch_start:batch_end]
batch_embeddings = embeddings[batch_start:batch_end]
# Create document entries for bulk upload
batch_entries = [
{
"_index": self._get_index(),
"_id": doc_id,
"_source": {"text": text, "metadata": metadata, "embeddings": embedding},
}
for doc_id, text, metadata, embedding in zip(
ids[batch_start:batch_end], batch_documents, metadatas[batch_start:batch_end], batch_embeddings
)
]
# Perform bulk operation
bulk(self.client, batch_entries, **kwargs)
self.client.indices.refresh(index=self._get_index())
# Sleep to avoid rate limiting
time.sleep(0.1)
def query(
self,
input_query: str,
n_results: int,
where: dict[str, any],
citations: bool = False,
**kwargs: Optional[dict[str, Any]],
) -> Union[list[tuple[str, dict]], list[str]]:
"""
query contents from vector database based on vector similarity
:param input_query: query string
:type input_query: str
:param n_results: no of similar documents to fetch from database
:type n_results: int
:param where: Optional. to filter data
:type where: dict[str, any]
:param citations: we use citations boolean param to return context along with the answer.
:type citations: bool, default is False.
:return: The content of the document that matched your query,
along with url of the source and doc_id (if citations flag is true)
:rtype: list[str], if citations=False, otherwise list[tuple[str, str, str]]
"""
embeddings = OpenAIEmbeddings()
docsearch = OpenSearchVectorSearch(
index_name=self._get_index(),
embedding_function=embeddings,
opensearch_url=f"{self.config.opensearch_url}",
http_auth=self.config.http_auth,
use_ssl=hasattr(self.config, "use_ssl") and self.config.use_ssl,
verify_certs=hasattr(self.config, "verify_certs") and self.config.verify_certs,
)
pre_filter = {"match_all": {}} # default
if len(where) > 0:
pre_filter = {"bool": {"must": []}}
for key, value in where.items():
pre_filter["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
docs = docsearch.similarity_search_with_score(
input_query,
search_type="script_scoring",
space_type="cosinesimil",
vector_field="embeddings",
text_field="text",
metadata_field="metadata",
pre_filter=pre_filter,
k=n_results,
**kwargs,
)
contexts = []
for doc, score in docs:
context = doc.page_content
if citations:
metadata = doc.metadata
metadata["score"] = score
contexts.append(tuple((context, metadata)))
else:
contexts.append(context)
return contexts
def set_collection_name(self, name: str):
"""
Set the name of the collection. A collection is an isolated space for vectors.
:param name: Name of the collection.
:type name: str
"""
if not isinstance(name, str):
raise TypeError("Collection name must be a string")
self.config.collection_name = name
def count(self) -> int:
"""
Count number of documents/chunks embedded in the database.
:return: number of documents
:rtype: int
"""
query = {"query": {"match_all": {}}}
response = self.client.count(index=self._get_index(), body=query)
doc_count = response["count"]
return doc_count
def reset(self):
"""
Resets the database. Deletes all embeddings irreversibly.
"""
# Delete all data from the database
if self.client.indices.exists(index=self._get_index()):
# delete index in ES
self.client.indices.delete(index=self._get_index())
def delete(self, where):
"""Deletes a document from the OpenSearch index"""
query = {"query": {"bool": {"must": []}}}
for key, value in where.items():
query["query"]["bool"]["must"].append({"term": {f"metadata.{key}.keyword": value}})
self.client.delete_by_query(index=self._get_index(), body=query)
def _get_index(self) -> str:
"""Get the OpenSearch index for a collection
:return: OpenSearch index
:rtype: str
"""
return self.config.collection_name