231 lines
7.1 KiB
Plaintext
231 lines
7.1 KiB
Plaintext
---
|
||
title: Vercel AI SDK
|
||
---
|
||
|
||
The [**Mem0 AI SDK Provider**](https://www.npmjs.com/package/@mem0/vercel-ai-provider) is a library developed by **Mem0** to integrate with the Vercel AI SDK. This library brings enhanced AI interaction capabilities to your applications by introducing persistent memory functionality.
|
||
|
||
<Note type="info">
|
||
🎉 Exciting news! Mem0 AI SDK now supports <strong>Tools Call</strong>.
|
||
</Note>
|
||
|
||
## Overview
|
||
|
||
1. 🧠 Offers persistent memory storage for conversational AI
|
||
2. 🔄 Enables smooth integration with the Vercel AI SDK
|
||
3. 🚀 Ensures compatibility with multiple LLM providers
|
||
4. 📝 Supports structured message formats for clarity
|
||
5. ⚡ Facilitates streaming response capabilities
|
||
|
||
## Setup and Configuration
|
||
|
||
Install the SDK provider using npm:
|
||
|
||
```bash
|
||
npm install @mem0/vercel-ai-provider
|
||
```
|
||
|
||
## Getting Started
|
||
|
||
### Setting Up Mem0
|
||
|
||
1. Get your **Mem0 API Key** from the [Mem0 Dashboard](https://app.mem0.ai/dashboard/api-keys).
|
||
|
||
2. Initialize the Mem0 Client in your application:
|
||
|
||
```typescript
|
||
import { createMem0 } from "@mem0/vercel-ai-provider";
|
||
|
||
const mem0 = createMem0({
|
||
provider: "openai",
|
||
mem0ApiKey: "m0-xxx",
|
||
apiKey: "provider-api-key",
|
||
config: {
|
||
compatibility: "strict",
|
||
},
|
||
// Optional Mem0 Global Config
|
||
mem0Config: {
|
||
user_id: "mem0-user-id",
|
||
org_id: "mem0-org-id",
|
||
project_id: "mem0-project-id",
|
||
},
|
||
});
|
||
```
|
||
|
||
> **Note**: The `openai` provider is set as default. Consider using `MEM0_API_KEY` and `OPENAI_API_KEY` as environment variables for security.
|
||
|
||
> **Note**: The `mem0Config` is optional. It is used to set the global config for the Mem0 Client (eg. `user_id`, `agent_id`, `app_id`, `run_id`, `org_id`, `project_id` etc).
|
||
|
||
3. Add Memories to Enhance Context:
|
||
|
||
```typescript
|
||
import { LanguageModelV1Prompt } from "ai";
|
||
import { addMemories } from "@mem0/vercel-ai-provider";
|
||
|
||
const messages: LanguageModelV1Prompt = [
|
||
{ role: "user", content: [{ type: "text", text: "I love red cars." }] },
|
||
];
|
||
|
||
await addMemories(messages, { user_id: "borat" });
|
||
```
|
||
|
||
### Standalone Features:
|
||
|
||
```typescript
|
||
await addMemories(messages, { user_id: "borat", mem0ApiKey: "m0-xxx", org_id: "org_xx", project_id: "proj_xx" });
|
||
await retrieveMemories(prompt, { user_id: "borat", mem0ApiKey: "m0-xxx", org_id: "org_xx", project_id: "proj_xx" });
|
||
await getMemories(prompt, { user_id: "borat", mem0ApiKey: "m0-xxx", org_id: "org_xx", project_id: "proj_xx" });
|
||
```
|
||
> For standalone features, such as `addMemories`, `retrieveMemories`, and `getMemories`, you must either set `MEM0_API_KEY` as an environment variable or pass it directly in the function call.
|
||
|
||
> `getMemories` will return raw memories in the form of an array of objects, while `retrieveMemories` will return a response in string format with a system prompt ingested with the retrieved memories.
|
||
|
||
### 1. Basic Text Generation with Memory Context
|
||
|
||
```typescript
|
||
import { generateText } from "ai";
|
||
import { createMem0 } from "@mem0/vercel-ai-provider";
|
||
|
||
const mem0 = createMem0();
|
||
|
||
const { text } = await generateText({
|
||
model: mem0("gpt-4-turbo", { user_id: "borat" }),
|
||
prompt: "Suggest me a good car to buy!",
|
||
});
|
||
```
|
||
|
||
### 2. Combining OpenAI Provider with Memory Utils
|
||
|
||
```typescript
|
||
import { generateText } from "ai";
|
||
import { openai } from "@ai-sdk/openai";
|
||
import { retrieveMemories } from "@mem0/vercel-ai-provider";
|
||
|
||
const prompt = "Suggest me a good car to buy.";
|
||
const memories = await retrieveMemories(prompt, { user_id: "borat" });
|
||
|
||
const { text } = await generateText({
|
||
model: openai("gpt-4-turbo"),
|
||
prompt: prompt,
|
||
system: memories,
|
||
});
|
||
```
|
||
|
||
### 3. Structured Message Format with Memory
|
||
|
||
```typescript
|
||
import { generateText } from "ai";
|
||
import { createMem0 } from "@mem0/vercel-ai-provider";
|
||
|
||
const mem0 = createMem0();
|
||
|
||
const { text } = await generateText({
|
||
model: mem0("gpt-4-turbo", { user_id: "borat" }),
|
||
messages: [
|
||
{
|
||
role: "user",
|
||
content: [
|
||
{ type: "text", text: "Suggest me a good car to buy." },
|
||
{ type: "text", text: "Why is it better than the other cars for me?" },
|
||
],
|
||
},
|
||
],
|
||
});
|
||
```
|
||
|
||
### 3. Streaming Responses with Memory Context
|
||
|
||
```typescript
|
||
import { streamText } from "ai";
|
||
import { createMem0 } from "@mem0/vercel-ai-provider";
|
||
|
||
const mem0 = createMem0();
|
||
|
||
const { textStream } = await streamText({
|
||
model: mem0("gpt-4-turbo", {
|
||
user_id: "borat",
|
||
}),
|
||
prompt: "Suggest me a good car to buy! Why is it better than the other cars for me? Give options for every price range.",
|
||
});
|
||
|
||
for await (const textPart of textStream) {
|
||
process.stdout.write(textPart);
|
||
}
|
||
```
|
||
|
||
### 4. Generate Responses with Tools Call
|
||
|
||
```typescript
|
||
import { generateText } from "ai";
|
||
import { createMem0 } from "@mem0/vercel-ai-provider";
|
||
import { z } from "zod";
|
||
|
||
const mem0 = createMem0({
|
||
provider: "anthropic",
|
||
apiKey: "anthropic-api-key",
|
||
mem0Config: {
|
||
// Global User ID
|
||
user_id: "borat"
|
||
}
|
||
});
|
||
|
||
const prompt = "What the temperature in the city that I live in?"
|
||
|
||
const result = await generateText({
|
||
model: mem0('claude-3-5-sonnet-20240620'),
|
||
tools: {
|
||
weather: tool({
|
||
description: 'Get the weather in a location',
|
||
parameters: z.object({
|
||
location: z.string().describe('The location to get the weather for'),
|
||
}),
|
||
execute: async ({ location }) => ({
|
||
location,
|
||
temperature: 72 + Math.floor(Math.random() * 21) - 10,
|
||
}),
|
||
}),
|
||
},
|
||
prompt: prompt,
|
||
});
|
||
|
||
console.log(result);
|
||
```
|
||
|
||
### 5. Get sources from memory
|
||
|
||
```typescript
|
||
const { text, sources } = await generateText({
|
||
model: mem0("gpt-4-turbo"),
|
||
prompt: "Suggest me a good car to buy!",
|
||
});
|
||
|
||
console.log(sources);
|
||
```
|
||
|
||
The same can be done for `streamText` as well.
|
||
|
||
|
||
## Key Features
|
||
|
||
- `createMem0()`: Initializes a new Mem0 provider instance.
|
||
- `retrieveMemories()`: Retrieves memory context for prompts.
|
||
- `getMemories()`: Get memories from your profile in array format.
|
||
- `addMemories()`: Adds user memories to enhance contextual responses.
|
||
|
||
## Best Practices
|
||
|
||
1. **User Identification**: Use a unique `user_id` for consistent memory retrieval.
|
||
2. **Memory Cleanup**: Regularly clean up unused memory data.
|
||
|
||
> **Note**: We also have support for `agent_id`, `app_id`, and `run_id`. Refer [Docs](/api-reference/memory/add-memories).
|
||
|
||
## Conclusion
|
||
|
||
Mem0’s Vercel AI SDK enables the creation of intelligent, context-aware applications with persistent memory and seamless integration.
|
||
|
||
## Help
|
||
|
||
- For more details on Vercel AI SDK, visit the [Vercel AI SDK documentation](https://sdk.vercel.ai/docs/introduction).
|
||
- For Mem0 documentation, refer to the [Mem0 Platform](https://app.mem0.ai/).
|
||
- If you need further assistance, please feel free to reach out to us through following methods:
|
||
|
||
<Snippet file="get-help.mdx" /> |