Files
t6_mem0/mem0/memory/graph_memory.py
2025-06-17 17:47:09 +05:30

619 lines
26 KiB
Python

import logging
from mem0.memory.utils import format_entities
try:
from langchain_neo4j import Neo4jGraph
except ImportError:
raise ImportError("langchain_neo4j is not installed. Please install it using pip install langchain-neo4j")
try:
from rank_bm25 import BM25Okapi
except ImportError:
raise ImportError("rank_bm25 is not installed. Please install it using pip install rank-bm25")
from mem0.graphs.tools import (
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
DELETE_MEMORY_TOOL_GRAPH,
EXTRACT_ENTITIES_STRUCT_TOOL,
EXTRACT_ENTITIES_TOOL,
RELATIONS_STRUCT_TOOL,
RELATIONS_TOOL,
)
from mem0.graphs.utils import EXTRACT_RELATIONS_PROMPT, get_delete_messages
from mem0.utils.factory import EmbedderFactory, LlmFactory
logger = logging.getLogger(__name__)
class MemoryGraph:
def __init__(self, config):
self.config = config
self.graph = Neo4jGraph(
self.config.graph_store.config.url,
self.config.graph_store.config.username,
self.config.graph_store.config.password,
self.config.graph_store.config.database,
refresh_schema=False,
driver_config={"notifications_min_severity": "OFF"},
)
self.embedding_model = EmbedderFactory.create(
self.config.embedder.provider, self.config.embedder.config, self.config.vector_store.config
)
self.node_label = ":`__Entity__`" if self.config.graph_store.config.base_label else ""
if self.config.graph_store.config.base_label:
# Safely add user_id index
try:
self.graph.query(f"CREATE INDEX entity_single IF NOT EXISTS FOR (n {self.node_label}) ON (n.user_id)")
except Exception:
pass
try: # Safely try to add composite index (Enterprise only)
self.graph.query(
f"CREATE INDEX entity_composite IF NOT EXISTS FOR (n {self.node_label}) ON (n.name, n.user_id)"
)
except Exception:
pass
self.llm_provider = "openai_structured"
if self.config.llm.provider:
self.llm_provider = self.config.llm.provider
if self.config.graph_store.llm:
self.llm_provider = self.config.graph_store.llm.provider
self.llm = LlmFactory.create(self.llm_provider, self.config.llm.config)
self.user_id = None
self.threshold = 0.7
def add(self, data, filters):
"""
Adds data to the graph.
Args:
data (str): The data to add to the graph.
filters (dict): A dictionary containing filters to be applied during the addition.
"""
entity_type_map = self._retrieve_nodes_from_data(data, filters)
to_be_added = self._establish_nodes_relations_from_data(data, filters, entity_type_map)
search_output = self._search_graph_db(node_list=list(entity_type_map.keys()), filters=filters)
to_be_deleted = self._get_delete_entities_from_search_output(search_output, data, filters)
# TODO: Batch queries with APOC plugin
# TODO: Add more filter support
deleted_entities = self._delete_entities(to_be_deleted, filters)
added_entities = self._add_entities(to_be_added, filters, entity_type_map)
return {"deleted_entities": deleted_entities, "added_entities": added_entities}
def search(self, query, filters, limit=100):
"""
Search for memories and related graph data.
Args:
query (str): Query to search for.
filters (dict): A dictionary containing filters to be applied during the search.
limit (int): The maximum number of nodes and relationships to retrieve. Defaults to 100.
Returns:
dict: A dictionary containing:
- "contexts": List of search results from the base data store.
- "entities": List of related graph data based on the query.
"""
entity_type_map = self._retrieve_nodes_from_data(query, filters)
search_output = self._search_graph_db(node_list=list(entity_type_map.keys()), filters=filters)
if not search_output:
return []
search_outputs_sequence = [
[item["source"], item["relationship"], item["destination"]] for item in search_output
]
bm25 = BM25Okapi(search_outputs_sequence)
tokenized_query = query.split(" ")
reranked_results = bm25.get_top_n(tokenized_query, search_outputs_sequence, n=5)
search_results = []
for item in reranked_results:
search_results.append({"source": item[0], "relationship": item[1], "destination": item[2]})
logger.info(f"Returned {len(search_results)} search results")
return search_results
def delete_all(self, filters):
if filters.get("agent_id"):
cypher = f"""
MATCH (n {self.node_label} {{user_id: $user_id, agent_id: $agent_id}})
DETACH DELETE n
"""
params = {"user_id": filters["user_id"], "agent_id": filters["agent_id"]}
else:
cypher = f"""
MATCH (n {self.node_label} {{user_id: $user_id}})
DETACH DELETE n
"""
params = {"user_id": filters["user_id"]}
self.graph.query(cypher, params=params)
def get_all(self, filters, limit=100):
agent_filter = ""
params = {"user_id": filters["user_id"], "limit": limit}
if filters.get("agent_id"):
agent_filter = "AND n.agent_id = $agent_id AND m.agent_id = $agent_id"
params["agent_id"] = filters["agent_id"]
query = f"""
MATCH (n {self.node_label} {{user_id: $user_id}})-[r]->(m {self.node_label} {{user_id: $user_id}})
WHERE 1=1 {agent_filter}
RETURN n.name AS source, type(r) AS relationship, m.name AS target
LIMIT $limit
"""
results = self.graph.query(query, params=params)
final_results = []
for result in results:
final_results.append(
{
"source": result["source"],
"relationship": result["relationship"],
"target": result["target"],
}
)
logger.info(f"Retrieved {len(final_results)} relationships")
return final_results
def _retrieve_nodes_from_data(self, data, filters):
"""Extracts all the entities mentioned in the query."""
_tools = [EXTRACT_ENTITIES_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [EXTRACT_ENTITIES_STRUCT_TOOL]
search_results = self.llm.generate_response(
messages=[
{
"role": "system",
"content": f"You are a smart assistant who understands entities and their types in a given text. If user message contains self reference such as 'I', 'me', 'my' etc. then use {filters['user_id']} as the source entity. Extract all the entities from the text. ***DO NOT*** answer the question itself if the given text is a question.",
},
{"role": "user", "content": data},
],
tools=_tools,
)
entity_type_map = {}
try:
for tool_call in search_results["tool_calls"]:
if tool_call["name"] != "extract_entities":
continue
for item in tool_call["arguments"]["entities"]:
entity_type_map[item["entity"]] = item["entity_type"]
except Exception as e:
logger.exception(
f"Error in search tool: {e}, llm_provider={self.llm_provider}, search_results={search_results}"
)
entity_type_map = {k.lower().replace(" ", "_"): v.lower().replace(" ", "_") for k, v in entity_type_map.items()}
logger.debug(f"Entity type map: {entity_type_map}\n search_results={search_results}")
return entity_type_map
def _establish_nodes_relations_from_data(self, data, filters, entity_type_map):
"""Establish relations among the extracted nodes."""
# Compose user identification string for prompt
user_identity = f"user_id: {filters['user_id']}"
if filters.get("agent_id"):
user_identity += f", agent_id: {filters['agent_id']}"
if self.config.graph_store.custom_prompt:
system_content = EXTRACT_RELATIONS_PROMPT.replace("USER_ID", user_identity)
# Add the custom prompt line if configured
system_content = system_content.replace(
"CUSTOM_PROMPT", f"4. {self.config.graph_store.custom_prompt}"
)
messages = [
{"role": "system", "content": system_content},
{"role": "user", "content": data},
]
else:
system_content = EXTRACT_RELATIONS_PROMPT.replace("USER_ID", user_identity)
messages = [
{"role": "system", "content": system_content},
{"role": "user", "content": f"List of entities: {list(entity_type_map.keys())}. \n\nText: {data}"},
]
_tools = [RELATIONS_TOOL]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [RELATIONS_STRUCT_TOOL]
extracted_entities = self.llm.generate_response(
messages=messages,
tools=_tools,
)
entities = []
if extracted_entities.get("tool_calls"):
entities = extracted_entities["tool_calls"][0].get("arguments", {}).get("entities", [])
entities = self._remove_spaces_from_entities(entities)
logger.debug(f"Extracted entities: {entities}")
return entities
def _search_graph_db(self, node_list, filters, limit=100):
"""Search similar nodes among and their respective incoming and outgoing relations."""
result_relations = []
agent_filter = ""
if filters.get("agent_id"):
agent_filter = "AND n.agent_id = $agent_id AND m.agent_id = $agent_id"
for node in node_list:
n_embedding = self.embedding_model.embed(node)
cypher_query = f"""
MATCH (n {self.node_label})
WHERE n.embedding IS NOT NULL AND n.user_id = $user_id
{agent_filter}
WITH n, round(2 * vector.similarity.cosine(n.embedding, $n_embedding) - 1, 4) AS similarity // denormalize for backward compatibility
WHERE similarity >= $threshold
CALL {{
MATCH (n)-[r]->(m)
WHERE m.user_id = $user_id {agent_filter.replace("n.", "m.")}
RETURN n.name AS source, elementId(n) AS source_id, type(r) AS relationship, elementId(r) AS relation_id, m.name AS destination, elementId(m) AS destination_id
UNION
MATCH (m)-[r]->(n)
WHERE m.user_id = $user_id {agent_filter.replace("n.", "m.")}
RETURN m.name AS source, elementId(m) AS source_id, type(r) AS relationship, elementId(r) AS relation_id, n.name AS destination, elementId(n) AS destination_id
}}
WITH distinct source, source_id, relationship, relation_id, destination, destination_id, similarity
RETURN source, source_id, relationship, relation_id, destination, destination_id, similarity
ORDER BY similarity DESC
LIMIT $limit
"""
params = {
"n_embedding": n_embedding,
"threshold": self.threshold,
"user_id": filters["user_id"],
"limit": limit,
}
if filters.get("agent_id"):
params["agent_id"] = filters["agent_id"]
ans = self.graph.query(cypher_query, params=params)
result_relations.extend(ans)
return result_relations
def _get_delete_entities_from_search_output(self, search_output, data, filters):
"""Get the entities to be deleted from the search output."""
search_output_string = format_entities(search_output)
# Compose user identification string for prompt
user_identity = f"user_id: {filters['user_id']}"
if filters.get("agent_id"):
user_identity += f", agent_id: {filters['agent_id']}"
system_prompt, user_prompt = get_delete_messages(search_output_string, data, user_identity)
_tools = [DELETE_MEMORY_TOOL_GRAPH]
if self.llm_provider in ["azure_openai_structured", "openai_structured"]:
_tools = [
DELETE_MEMORY_STRUCT_TOOL_GRAPH,
]
memory_updates = self.llm.generate_response(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
tools=_tools,
)
to_be_deleted = []
for item in memory_updates.get("tool_calls", []):
if item.get("name") == "delete_graph_memory":
to_be_deleted.append(item.get("arguments"))
# Clean entities formatting
to_be_deleted = self._remove_spaces_from_entities(to_be_deleted)
logger.debug(f"Deleted relationships: {to_be_deleted}")
return to_be_deleted
def _delete_entities(self, to_be_deleted, filters):
"""Delete the entities from the graph."""
user_id = filters["user_id"]
agent_id = filters.get("agent_id", None)
results = []
for item in to_be_deleted:
source = item["source"]
destination = item["destination"]
relationship = item["relationship"]
# Build the agent filter for the query
agent_filter = ""
params = {
"source_name": source,
"dest_name": destination,
"user_id": user_id,
}
if agent_id:
agent_filter = "AND n.agent_id = $agent_id AND m.agent_id = $agent_id"
params["agent_id"] = agent_id
# Delete the specific relationship between nodes
cypher = f"""
MATCH (n {self.node_label} {{name: $source_name, user_id: $user_id}})
-[r:{relationship}]->
(m {self.node_label} {{name: $dest_name, user_id: $user_id}})
WHERE 1=1 {agent_filter}
DELETE r
RETURN
n.name AS source,
m.name AS target,
type(r) AS relationship
"""
result = self.graph.query(cypher, params=params)
results.append(result)
return results
def _add_entities(self, to_be_added, filters, entity_type_map):
"""Add the new entities to the graph. Merge the nodes if they already exist."""
user_id = filters["user_id"]
agent_id = filters.get("agent_id", None)
results = []
for item in to_be_added:
# entities
source = item["source"]
destination = item["destination"]
relationship = item["relationship"]
# types
source_type = entity_type_map.get(source, "__User__")
source_label = self.node_label if self.node_label else f":`{source_type}`"
source_extra_set = f", source:`{source_type}`" if self.node_label else ""
destination_type = entity_type_map.get(destination, "__User__")
destination_label = self.node_label if self.node_label else f":`{destination_type}`"
destination_extra_set = f", destination:`{destination_type}`" if self.node_label else ""
# embeddings
source_embedding = self.embedding_model.embed(source)
dest_embedding = self.embedding_model.embed(destination)
# search for the nodes with the closest embeddings
source_node_search_result = self._search_source_node(source_embedding, filters, threshold=0.9)
destination_node_search_result = self._search_destination_node(dest_embedding, filters, threshold=0.9)
# TODO: Create a cypher query and common params for all the cases
if not destination_node_search_result and source_node_search_result:
# Build destination MERGE properties
merge_props = ["name: $destination_name", "user_id: $user_id"]
if agent_id:
merge_props.append("agent_id: $agent_id")
merge_props_str = ", ".join(merge_props)
cypher = f"""
MATCH (source)
WHERE elementId(source) = $source_id
SET source.mentions = coalesce(source.mentions, 0) + 1
WITH source
MERGE (destination {destination_label} {{{merge_props_str}}})
ON CREATE SET
destination.created = timestamp(),
destination.mentions = 1
{destination_extra_set}
ON MATCH SET
destination.mentions = coalesce(destination.mentions, 0) + 1
WITH source, destination
CALL db.create.setNodeVectorProperty(destination, 'embedding', $destination_embedding)
WITH source, destination
MERGE (source)-[r:{relationship}]->(destination)
ON CREATE SET
r.created = timestamp(),
r.mentions = 1
ON MATCH SET
r.mentions = coalesce(r.mentions, 0) + 1
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
"""
params = {
"source_id": source_node_search_result[0]["elementId(source_candidate)"],
"destination_name": destination,
"destination_embedding": dest_embedding,
"user_id": user_id,
}
if agent_id:
params["agent_id"] = agent_id
elif destination_node_search_result and not source_node_search_result:
# Build source MERGE properties
merge_props = ["name: $source_name", "user_id: $user_id"]
if agent_id:
merge_props.append("agent_id: $agent_id")
merge_props_str = ", ".join(merge_props)
cypher = f"""
MATCH (destination)
WHERE elementId(destination) = $destination_id
SET destination.mentions = coalesce(destination.mentions, 0) + 1
WITH destination
MERGE (source {source_label} {{{merge_props_str}}})
ON CREATE SET
source.created = timestamp(),
source.mentions = 1
{source_extra_set}
ON MATCH SET
source.mentions = coalesce(source.mentions, 0) + 1
WITH source, destination
CALL db.create.setNodeVectorProperty(source, 'embedding', $source_embedding)
WITH source, destination
MERGE (source)-[r:{relationship}]->(destination)
ON CREATE SET
r.created = timestamp(),
r.mentions = 1
ON MATCH SET
r.mentions = coalesce(r.mentions, 0) + 1
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
"""
params = {
"destination_id": destination_node_search_result[0]["elementId(destination_candidate)"],
"source_name": source,
"source_embedding": source_embedding,
"user_id": user_id,
}
if agent_id:
params["agent_id"] = agent_id
elif source_node_search_result and destination_node_search_result:
cypher = f"""
MATCH (source)
WHERE elementId(source) = $source_id
SET source.mentions = coalesce(source.mentions, 0) + 1
WITH source
MATCH (destination)
WHERE elementId(destination) = $destination_id
SET destination.mentions = coalesce(destination.mentions, 0) + 1
MERGE (source)-[r:{relationship}]->(destination)
ON CREATE SET
r.created_at = timestamp(),
r.updated_at = timestamp(),
r.mentions = 1
ON MATCH SET r.mentions = coalesce(r.mentions, 0) + 1
RETURN source.name AS source, type(r) AS relationship, destination.name AS target
"""
params = {
"source_id": source_node_search_result[0]["elementId(source_candidate)"],
"destination_id": destination_node_search_result[0]["elementId(destination_candidate)"],
"user_id": user_id,
}
if agent_id:
params["agent_id"] = agent_id
else:
# Build dynamic MERGE props for both source and destination
source_props = ["name: $source_name", "user_id: $user_id"]
dest_props = ["name: $dest_name", "user_id: $user_id"]
if agent_id:
source_props.append("agent_id: $agent_id")
dest_props.append("agent_id: $agent_id")
source_props_str = ", ".join(source_props)
dest_props_str = ", ".join(dest_props)
cypher = f"""
MERGE (source {source_label} {{{source_props_str}}})
ON CREATE SET source.created = timestamp(),
source.mentions = 1
{source_extra_set}
ON MATCH SET source.mentions = coalesce(source.mentions, 0) + 1
WITH source
CALL db.create.setNodeVectorProperty(source, 'embedding', $source_embedding)
WITH source
MERGE (destination {destination_label} {{{dest_props_str}}})
ON CREATE SET destination.created = timestamp(),
destination.mentions = 1
{destination_extra_set}
ON MATCH SET destination.mentions = coalesce(destination.mentions, 0) + 1
WITH source, destination
CALL db.create.setNodeVectorProperty(destination, 'embedding', $dest_embedding)
WITH source, destination
MERGE (source)-[rel:{relationship}]->(destination)
ON CREATE SET rel.created = timestamp(), rel.mentions = 1
ON MATCH SET rel.mentions = coalesce(rel.mentions, 0) + 1
RETURN source.name AS source, type(rel) AS relationship, destination.name AS target
"""
params = {
"source_name": source,
"dest_name": destination,
"source_embedding": source_embedding,
"dest_embedding": dest_embedding,
"user_id": user_id,
}
if agent_id:
params["agent_id"] = agent_id
result = self.graph.query(cypher, params=params)
results.append(result)
return results
def _remove_spaces_from_entities(self, entity_list):
for item in entity_list:
item["source"] = item["source"].lower().replace(" ", "_")
item["relationship"] = item["relationship"].lower().replace(" ", "_")
item["destination"] = item["destination"].lower().replace(" ", "_")
return entity_list
def _search_source_node(self, source_embedding, filters, threshold=0.9):
agent_filter = ""
if filters.get("agent_id"):
agent_filter = "AND source_candidate.agent_id = $agent_id"
cypher = f"""
MATCH (source_candidate {self.node_label})
WHERE source_candidate.embedding IS NOT NULL
AND source_candidate.user_id = $user_id
{agent_filter}
WITH source_candidate,
round(2 * vector.similarity.cosine(source_candidate.embedding, $source_embedding) - 1, 4) AS source_similarity // denormalize for backward compatibility
WHERE source_similarity >= $threshold
WITH source_candidate, source_similarity
ORDER BY source_similarity DESC
LIMIT 1
RETURN elementId(source_candidate)
"""
params = {
"source_embedding": source_embedding,
"user_id": filters["user_id"],
"threshold": threshold,
}
if filters.get("agent_id"):
params["agent_id"] = filters["agent_id"]
result = self.graph.query(cypher, params=params)
return result
def _search_destination_node(self, destination_embedding, filters, threshold=0.9):
agent_filter = ""
if filters.get("agent_id"):
agent_filter = "AND destination_candidate.agent_id = $agent_id"
cypher = f"""
MATCH (destination_candidate {self.node_label})
WHERE destination_candidate.embedding IS NOT NULL
AND destination_candidate.user_id = $user_id
{agent_filter}
WITH destination_candidate,
round(2 * vector.similarity.cosine(destination_candidate.embedding, $destination_embedding) - 1, 4) AS destination_similarity // denormalize for backward compatibility
WHERE destination_similarity >= $threshold
WITH destination_candidate, destination_similarity
ORDER BY destination_similarity DESC
LIMIT 1
RETURN elementId(destination_candidate)
"""
params = {
"destination_embedding": destination_embedding,
"user_id": filters["user_id"],
"threshold": threshold,
}
if filters.get("agent_id"):
params["agent_id"] = filters["agent_id"]
result = self.graph.query(cypher, params=params)
return result