Files
t6_mem0/embedchain/config/apps/OpenSourceAppConfig.py
cachho 0d4ad07d7b Feat/serialize deserialize (#508)
Co-authored-by: Taranjeet Singh <reachtotj@gmail.com>
2023-09-04 01:20:18 +05:30

63 lines
2.1 KiB
Python

from typing import Optional
from chromadb.utils import embedding_functions
from embedchain.helper_classes.json_serializable import register_deserializable
from .BaseAppConfig import BaseAppConfig
@register_deserializable
class OpenSourceAppConfig(BaseAppConfig):
"""
Config to initialize an embedchain custom `OpenSourceApp` instance, with extra config options.
"""
def __init__(
self,
log_level=None,
host=None,
port=None,
id=None,
collection_name=None,
collect_metrics: Optional[bool] = None,
model=None,
):
"""
:param log_level: Optional. (String) Debug level
['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'].
:param id: Optional. ID of the app. Document metadata will have this id.
:param collection_name: Optional. Collection name for the database.
:param host: Optional. Hostname for the database server.
:param port: Optional. Port for the database server.
:param collect_metrics: Defaults to True. Send anonymous telemetry to improve embedchain.
:param model: Optional. GPT4ALL uses the model to instantiate the class.
So unlike `App`, it has to be provided before querying.
"""
self.model = model or "orca-mini-3b.ggmlv3.q4_0.bin"
super().__init__(
log_level=log_level,
embedding_fn=OpenSourceAppConfig.default_embedding_function(),
host=host,
port=port,
id=id,
collection_name=collection_name,
collect_metrics=collect_metrics,
)
@staticmethod
def default_embedding_function():
"""
Sets embedding function to default (`all-MiniLM-L6-v2`).
:returns: The default embedding function
"""
try:
return embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
except ValueError as e:
print(e)
raise ModuleNotFoundError(
"The open source app requires extra dependencies. Install with `pip install embedchain[opensource]`"
) from None