Files
t6_mem0/embedchain/apps/Llama2App.py
Dev Khant ec9f454ad1 System prompt at App level (#484)
Co-authored-by: Taranjeet Singh <reachtotj@gmail.com>
2023-09-04 00:55:43 +05:30

41 lines
1.4 KiB
Python

import os
from typing import Optional
from langchain.llms import Replicate
from embedchain.config import AppConfig, ChatConfig
from embedchain.embedchain import EmbedChain
class Llama2App(EmbedChain):
"""
The EmbedChain Llama2App class.
Has two functions: add and query.
adds(data_type, url): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
"""
def __init__(self, config: AppConfig = None, system_prompt: Optional[str] = None):
"""
:param config: AppConfig instance to load as configuration. Optional.
:param system_prompt: System prompt string. Optional.
"""
if "REPLICATE_API_TOKEN" not in os.environ:
raise ValueError("Please set the REPLICATE_API_TOKEN environment variable.")
if config is None:
config = AppConfig()
super().__init__(config, system_prompt)
def get_llm_model_answer(self, prompt, config: ChatConfig = None):
# TODO: Move the model and other inputs into config
if self.system_prompt or config.system_prompt:
raise ValueError("Llama2App does not support `system_prompt`")
llm = Replicate(
model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5",
input={"temperature": 0.75, "max_length": 500, "top_p": 1},
)
return llm(prompt)