289 lines
9.1 KiB
Python
289 lines
9.1 KiB
Python
import json
|
|
import logging
|
|
from typing import List, Optional
|
|
|
|
from pydantic import BaseModel
|
|
|
|
try:
|
|
import psycopg2
|
|
from psycopg2.extras import execute_values
|
|
except ImportError:
|
|
raise ImportError("The 'psycopg2' library is required. Please install it using 'pip install psycopg2'.")
|
|
|
|
from mem0.vector_stores.base import VectorStoreBase
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OutputData(BaseModel):
|
|
id: Optional[str]
|
|
score: Optional[float]
|
|
payload: Optional[dict]
|
|
|
|
|
|
class PGVector(VectorStoreBase):
|
|
def __init__(
|
|
self,
|
|
dbname,
|
|
collection_name,
|
|
embedding_model_dims,
|
|
user,
|
|
password,
|
|
host,
|
|
port,
|
|
diskann,
|
|
hnsw,
|
|
):
|
|
"""
|
|
Initialize the PGVector database.
|
|
|
|
Args:
|
|
dbname (str): Database name
|
|
collection_name (str): Collection name
|
|
embedding_model_dims (int): Dimension of the embedding vector
|
|
user (str): Database user
|
|
password (str): Database password
|
|
host (str, optional): Database host
|
|
port (int, optional): Database port
|
|
diskann (bool, optional): Use DiskANN for faster search
|
|
hnsw (bool, optional): Use HNSW for faster search
|
|
"""
|
|
self.collection_name = collection_name
|
|
self.use_diskann = diskann
|
|
self.use_hnsw = hnsw
|
|
self.embedding_model_dims = embedding_model_dims
|
|
|
|
self.conn = psycopg2.connect(dbname=dbname, user=user, password=password, host=host, port=port)
|
|
self.cur = self.conn.cursor()
|
|
|
|
collections = self.list_cols()
|
|
if collection_name not in collections:
|
|
self.create_col(embedding_model_dims)
|
|
|
|
def create_col(self, embedding_model_dims):
|
|
"""
|
|
Create a new collection (table in PostgreSQL).
|
|
Will also initialize vector search index if specified.
|
|
|
|
Args:
|
|
embedding_model_dims (int): Dimension of the embedding vector.
|
|
"""
|
|
self.cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
|
|
self.cur.execute(
|
|
f"""
|
|
CREATE TABLE IF NOT EXISTS {self.collection_name} (
|
|
id UUID PRIMARY KEY,
|
|
vector vector({embedding_model_dims}),
|
|
payload JSONB
|
|
);
|
|
"""
|
|
)
|
|
|
|
if self.use_diskann and embedding_model_dims < 2000:
|
|
# Check if vectorscale extension is installed
|
|
self.cur.execute("SELECT * FROM pg_extension WHERE extname = 'vectorscale'")
|
|
if self.cur.fetchone():
|
|
# Create DiskANN index if extension is installed for faster search
|
|
self.cur.execute(
|
|
f"""
|
|
CREATE INDEX IF NOT EXISTS {self.collection_name}_diskann_idx
|
|
ON {self.collection_name}
|
|
USING diskann (vector);
|
|
"""
|
|
)
|
|
elif self.use_hnsw:
|
|
self.cur.execute(
|
|
f"""
|
|
CREATE INDEX IF NOT EXISTS {self.collection_name}_hnsw_idx
|
|
ON {self.collection_name}
|
|
USING hnsw (vector vector_cosine_ops)
|
|
"""
|
|
)
|
|
|
|
self.conn.commit()
|
|
|
|
def insert(self, vectors, payloads=None, ids=None):
|
|
"""
|
|
Insert vectors into a collection.
|
|
|
|
Args:
|
|
vectors (List[List[float]]): List of vectors to insert.
|
|
payloads (List[Dict], optional): List of payloads corresponding to vectors.
|
|
ids (List[str], optional): List of IDs corresponding to vectors.
|
|
"""
|
|
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
|
|
json_payloads = [json.dumps(payload) for payload in payloads]
|
|
|
|
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
|
|
execute_values(
|
|
self.cur,
|
|
f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s",
|
|
data,
|
|
)
|
|
self.conn.commit()
|
|
|
|
def search(self, query, vectors, limit=5, filters=None):
|
|
"""
|
|
Search for similar vectors.
|
|
|
|
Args:
|
|
query (str): Query.
|
|
vectors (List[float]): Query vector.
|
|
limit (int, optional): Number of results to return. Defaults to 5.
|
|
filters (Dict, optional): Filters to apply to the search. Defaults to None.
|
|
|
|
Returns:
|
|
list: Search results.
|
|
"""
|
|
filter_conditions = []
|
|
filter_params = []
|
|
|
|
if filters:
|
|
for k, v in filters.items():
|
|
filter_conditions.append("payload->>%s = %s")
|
|
filter_params.extend([k, str(v)])
|
|
|
|
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
|
|
|
self.cur.execute(
|
|
f"""
|
|
SELECT id, vector <=> %s::vector AS distance, payload
|
|
FROM {self.collection_name}
|
|
{filter_clause}
|
|
ORDER BY distance
|
|
LIMIT %s
|
|
""",
|
|
(vectors, *filter_params, limit),
|
|
)
|
|
|
|
results = self.cur.fetchall()
|
|
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
|
|
|
|
def delete(self, vector_id):
|
|
"""
|
|
Delete a vector by ID.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to delete.
|
|
"""
|
|
self.cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
|
|
self.conn.commit()
|
|
|
|
def update(self, vector_id, vector=None, payload=None):
|
|
"""
|
|
Update a vector and its payload.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to update.
|
|
vector (List[float], optional): Updated vector.
|
|
payload (Dict, optional): Updated payload.
|
|
"""
|
|
if vector:
|
|
self.cur.execute(
|
|
f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s",
|
|
(vector, vector_id),
|
|
)
|
|
if payload:
|
|
self.cur.execute(
|
|
f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s",
|
|
(psycopg2.extras.Json(payload), vector_id),
|
|
)
|
|
self.conn.commit()
|
|
|
|
def get(self, vector_id) -> OutputData:
|
|
"""
|
|
Retrieve a vector by ID.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to retrieve.
|
|
|
|
Returns:
|
|
OutputData: Retrieved vector.
|
|
"""
|
|
self.cur.execute(
|
|
f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s",
|
|
(vector_id,),
|
|
)
|
|
result = self.cur.fetchone()
|
|
if not result:
|
|
return None
|
|
return OutputData(id=str(result[0]), score=None, payload=result[2])
|
|
|
|
def list_cols(self) -> List[str]:
|
|
"""
|
|
List all collections.
|
|
|
|
Returns:
|
|
List[str]: List of collection names.
|
|
"""
|
|
self.cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
|
|
return [row[0] for row in self.cur.fetchall()]
|
|
|
|
def delete_col(self):
|
|
"""Delete a collection."""
|
|
self.cur.execute(f"DROP TABLE IF EXISTS {self.collection_name}")
|
|
self.conn.commit()
|
|
|
|
def col_info(self):
|
|
"""
|
|
Get information about a collection.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Collection information.
|
|
"""
|
|
self.cur.execute(
|
|
f"""
|
|
SELECT
|
|
table_name,
|
|
(SELECT COUNT(*) FROM {self.collection_name}) as row_count,
|
|
(SELECT pg_size_pretty(pg_total_relation_size('{self.collection_name}'))) as total_size
|
|
FROM information_schema.tables
|
|
WHERE table_schema = 'public' AND table_name = %s
|
|
""",
|
|
(self.collection_name,),
|
|
)
|
|
result = self.cur.fetchone()
|
|
return {"name": result[0], "count": result[1], "size": result[2]}
|
|
|
|
def list(self, filters=None, limit=100):
|
|
"""
|
|
List all vectors in a collection.
|
|
|
|
Args:
|
|
filters (Dict, optional): Filters to apply to the list.
|
|
limit (int, optional): Number of vectors to return. Defaults to 100.
|
|
|
|
Returns:
|
|
List[OutputData]: List of vectors.
|
|
"""
|
|
filter_conditions = []
|
|
filter_params = []
|
|
|
|
if filters:
|
|
for k, v in filters.items():
|
|
filter_conditions.append("payload->>%s = %s")
|
|
filter_params.extend([k, str(v)])
|
|
|
|
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
|
|
|
query = f"""
|
|
SELECT id, vector, payload
|
|
FROM {self.collection_name}
|
|
{filter_clause}
|
|
LIMIT %s
|
|
"""
|
|
|
|
self.cur.execute(query, (*filter_params, limit))
|
|
|
|
results = self.cur.fetchall()
|
|
return [[OutputData(id=str(r[0]), score=None, payload=r[2]) for r in results]]
|
|
|
|
def __del__(self):
|
|
"""
|
|
Close the database connection when the object is deleted.
|
|
"""
|
|
if hasattr(self, "cur"):
|
|
self.cur.close()
|
|
if hasattr(self, "conn"):
|
|
self.conn.close()
|