* Add open source LLM model: gpt4all * Add open source embedding model: sentence transformers
33 lines
982 B
Python
33 lines
982 B
Python
import chromadb
|
|
import os
|
|
|
|
from chromadb.utils import embedding_functions
|
|
|
|
from embedchain.vectordb.base_vector_db import BaseVectorDB
|
|
|
|
openai_ef = embedding_functions.OpenAIEmbeddingFunction(
|
|
api_key=os.getenv("OPENAI_API_KEY"),
|
|
organization_id=os.getenv("OPENAI_ORGANIZATION"),
|
|
model_name="text-embedding-ada-002"
|
|
)
|
|
|
|
class ChromaDB(BaseVectorDB):
|
|
def __init__(self, db_dir=None, ef=None):
|
|
self.ef = ef if ef is not None else openai_ef
|
|
if db_dir is None:
|
|
db_dir = "db"
|
|
self.client_settings = chromadb.config.Settings(
|
|
chroma_db_impl="duckdb+parquet",
|
|
persist_directory=db_dir,
|
|
anonymized_telemetry=False
|
|
)
|
|
super().__init__()
|
|
|
|
def _get_or_create_db(self):
|
|
return chromadb.Client(self.client_settings)
|
|
|
|
def _get_or_create_collection(self):
|
|
return self.client.get_or_create_collection(
|
|
'embedchain_store', embedding_function=self.ef,
|
|
)
|