Files
t6_mem0/mem0/embeddings/langchain.py

37 lines
1.2 KiB
Python

import os
from typing import Literal, Optional
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
try:
from langchain.embeddings.base import Embeddings
except ImportError:
raise ImportError("langchain is not installed. Please install it using `pip install langchain`")
class LangchainEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
if self.config.model is None:
raise ValueError("`model` parameter is required")
if not isinstance(self.config.model, Embeddings):
raise ValueError("`model` must be an instance of Embeddings")
self.langchain_model = self.config.model
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Langchain.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
return self.langchain_model.embed_query(text)