Files
t6_mem0/mem0/embeddings/huggingface.py
2025-05-05 11:20:34 +05:30

42 lines
1.6 KiB
Python

import logging
from typing import Literal, Optional
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("sentence_transformers").setLevel(logging.WARNING)
logging.getLogger("huggingface_hub").setLevel(logging.WARNING)
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class HuggingFaceEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
if config.huggingface_base_url:
self.client = OpenAI(base_url=config.huggingface_base_url)
else:
self.config.model = self.config.model or "multi-qa-MiniLM-L6-cos-v1"
self.model = SentenceTransformer(self.config.model, **self.config.model_kwargs)
self.config.embedding_dims = self.config.embedding_dims or self.model.get_sentence_embedding_dimension()
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Hugging Face.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
if self.config.huggingface_base_url:
return self.client.embeddings.create(input=text, model="tei").data[0].embedding
else:
return self.model.encode(text, convert_to_numpy=True).tolist()