38 lines
1.1 KiB
Plaintext
38 lines
1.1 KiB
Plaintext
You can use embedding models from Ollama to run Mem0 locally.
|
||
|
||
### Usage
|
||
|
||
```python
|
||
import os
|
||
from mem0 import Memory
|
||
|
||
os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM
|
||
|
||
config = {
|
||
"embedder": {
|
||
"provider": "ollama",
|
||
"config": {
|
||
"model": "mxbai-embed-large"
|
||
}
|
||
}
|
||
}
|
||
|
||
m = Memory.from_config(config)
|
||
messages = [
|
||
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
||
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
||
{"role": "user", "content": "I’m not a big fan of thriller movies but I love sci-fi movies."},
|
||
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
||
]
|
||
m.add(messages, user_id="john")
|
||
```
|
||
|
||
### Config
|
||
|
||
Here are the parameters available for configuring Ollama embedder:
|
||
|
||
| Parameter | Description | Default Value |
|
||
| --- | --- | --- |
|
||
| `model` | The name of the OpenAI model to use | `nomic-embed-text` |
|
||
| `embedding_dims` | Dimensions of the embedding model | `512` |
|
||
| `ollama_base_url` | Base URL for ollama connection | `None` | |