Files
t6_mem0/mem0/llms/gemini.py
2024-10-21 16:23:26 +05:30

155 lines
5.3 KiB
Python

import os
from typing import Dict, List, Optional
try:
import google.generativeai as genai
from google.generativeai import GenerativeModel
from google.generativeai.types import content_types
except ImportError:
raise ImportError("The 'google-generativeai' library is required. Please install it using 'pip install google-generativeai'.")
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class GeminiLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "gemini-1.5-flash-latest"
api_key = self.config.api_key or os.getenv("GEMINI_API_KEY")
genai.configure(api_key=api_key)
self.client = GenerativeModel(model_name=self.config.model)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": content if (content := response.candidates[0].content.parts[0].text) else None,
"tool_calls": [],
}
for part in response.candidates[0].content.parts:
if fn := part.function_call:
processed_response["tool_calls"].append(
{
"name": fn.name,
"arguments": {key:val for key, val in fn.args.items()},
}
)
return processed_response
else:
return response.candidates[0].content.parts[0].text
def _reformat_messages(self, messages : List[Dict[str, str]]):
"""
Reformat messages for Gemini.
Args:
messages: The list of messages provided in the request.
Returns:
list: The list of messages in the required format.
"""
new_messages = []
for message in messages:
if message["role"] == "system":
content = "THIS IS A SYSTEM PROMPT. YOU MUST OBEY THIS: " + message["content"]
else:
content = message["content"]
new_messages.append({"parts": content,
"role": "model" if message["role"] == "model" else "user"})
return new_messages
def _reformat_tools(self, tools: Optional[List[Dict]]):
"""
Reformat tools for Gemini.
Args:
tools: The list of tools provided in the request.
Returns:
list: The list of tools in the required format.
"""
def remove_additional_properties(data):
"""Recursively removes 'additionalProperties' from nested dictionaries."""
if isinstance(data, dict):
filtered_dict = {
key: remove_additional_properties(value)
for key, value in data.items()
if not (key == "additionalProperties")
}
return filtered_dict
else:
return data
new_tools = []
if tools:
for tool in tools:
func = tool['function'].copy()
new_tools.append({"function_declarations":[remove_additional_properties(func)]})
return new_tools
else:
return None
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Gemini.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format for the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"temperature": self.config.temperature,
"max_output_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format:
params["response_mime_type"] = "application/json"
params["response_schema"] = list[response_format]
if tool_choice:
tool_config = content_types.to_tool_config(
{"function_calling_config":
{"mode": tool_choice, "allowed_function_names": [tool['function']['name'] for tool in tools] if tool_choice == "any" else None}
})
response = self.client.generate_content(contents = self._reformat_messages(messages),
tools = self._reformat_tools(tools),
generation_config = genai.GenerationConfig(**params),
tool_config = tool_config)
return self._parse_response(response, tools)