338 lines
11 KiB
Python
338 lines
11 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
import time
|
|
|
|
try:
|
|
from opensearchpy import OpenSearch, RequestsHttpConnection
|
|
except ImportError:
|
|
raise ImportError("OpenSearch requires extra dependencies. Install with `pip install opensearch-py`") from None
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from mem0.configs.vector_stores.opensearch import OpenSearchConfig
|
|
from mem0.vector_stores.base import VectorStoreBase
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OutputData(BaseModel):
|
|
id: str
|
|
score: float
|
|
payload: Dict
|
|
|
|
|
|
class OpenSearchDB(VectorStoreBase):
|
|
def __init__(self, **kwargs):
|
|
config = OpenSearchConfig(**kwargs)
|
|
|
|
# Initialize OpenSearch client
|
|
self.client = OpenSearch(
|
|
hosts=[{"host": config.host, "port": config.port or 9200}],
|
|
http_auth=config.http_auth
|
|
if config.http_auth
|
|
else ((config.user, config.password) if (config.user and config.password) else None),
|
|
use_ssl=config.use_ssl,
|
|
verify_certs=config.verify_certs,
|
|
connection_class=RequestsHttpConnection,
|
|
pool_maxsize=20
|
|
)
|
|
|
|
self.collection_name = config.collection_name
|
|
self.embedding_model_dims = config.embedding_model_dims
|
|
self.create_col(self.collection_name, self.embedding_model_dims)
|
|
|
|
def create_index(self) -> None:
|
|
"""Create OpenSearch index with proper mappings if it doesn't exist."""
|
|
index_settings = {
|
|
"settings": {
|
|
"index": {"number_of_replicas": 1, "number_of_shards": 5, "refresh_interval": "10s", "knn": True}
|
|
},
|
|
"mappings": {
|
|
"properties": {
|
|
"text": {"type": "text"},
|
|
"vector_field": {
|
|
"type": "knn_vector",
|
|
"dimension": self.embedding_model_dims,
|
|
"method": {"engine": "nmslib", "name": "hnsw", "space_type": "cosinesimil"},
|
|
},
|
|
"metadata": {"type": "object", "properties": {"user_id": {"type": "keyword"}}},
|
|
}
|
|
},
|
|
}
|
|
|
|
if not self.client.indices.exists(index=self.collection_name):
|
|
self.client.indices.create(index=self.collection_name, body=index_settings)
|
|
logger.info(f"Created index {self.collection_name}")
|
|
else:
|
|
logger.info(f"Index {self.collection_name} already exists")
|
|
|
|
def create_col(self, name: str, vector_size: int) -> None:
|
|
"""Create a new collection (index in OpenSearch)."""
|
|
index_settings = {
|
|
"settings": {
|
|
"index.knn": True
|
|
},
|
|
"mappings": {
|
|
"properties": {
|
|
"vector_field": {
|
|
"type": "knn_vector",
|
|
"dimension": vector_size,
|
|
"method": {"engine": "nmslib", "name": "hnsw", "space_type": "cosinesimil"},
|
|
},
|
|
"payload": {"type": "object"},
|
|
"id": {"type": "keyword"},
|
|
}
|
|
}
|
|
}
|
|
|
|
if not self.client.indices.exists(index=name):
|
|
self.client.indices.create(index=name, body=index_settings)
|
|
logger.info(f"Created index {name}")
|
|
|
|
# Wait for index to be ready
|
|
max_retries = 60 # 60 seconds timeout
|
|
retry_count = 0
|
|
while retry_count < max_retries:
|
|
try:
|
|
# Check if index is ready by attempting a simple search
|
|
self.client.search(index=name, body={"query": {"match_all": {}}})
|
|
logger.info(f"Index {name} is ready")
|
|
time.sleep(1)
|
|
return
|
|
except Exception:
|
|
retry_count += 1
|
|
if retry_count == max_retries:
|
|
raise TimeoutError(
|
|
f"Index {name} creation timed out after {max_retries} seconds"
|
|
)
|
|
time.sleep(0.5)
|
|
|
|
def insert(
|
|
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
|
|
) -> List[OutputData]:
|
|
"""Insert vectors into the index."""
|
|
if not ids:
|
|
ids = [str(i) for i in range(len(vectors))]
|
|
|
|
if payloads is None:
|
|
payloads = [{} for _ in range(len(vectors))]
|
|
|
|
for i, (vec, id_) in enumerate(zip(vectors, ids)):
|
|
body = {
|
|
"vector_field": vec,
|
|
"payload": payloads[i],
|
|
"id": id_,
|
|
}
|
|
self.client.index(index=self.collection_name, body=body)
|
|
|
|
results = []
|
|
|
|
return results
|
|
|
|
def search(
|
|
self, query: str, vectors: List[float], limit: int = 5, filters: Optional[Dict] = None
|
|
) -> List[OutputData]:
|
|
"""Search for similar vectors using OpenSearch k-NN search with optional filters."""
|
|
|
|
# Base KNN query
|
|
knn_query = {
|
|
"knn": {
|
|
"vector_field": {
|
|
"vector": vectors,
|
|
"k": limit * 2,
|
|
}
|
|
}
|
|
}
|
|
|
|
# Start building the full query
|
|
query_body = {
|
|
"size": limit * 2,
|
|
"query": None
|
|
}
|
|
|
|
# Prepare filter conditions if applicable
|
|
filter_clauses = []
|
|
if filters:
|
|
for key in ["user_id", "run_id", "agent_id"]:
|
|
value = filters.get(key)
|
|
if value:
|
|
filter_clauses.append({
|
|
"term": {f"payload.{key}.keyword": value}
|
|
})
|
|
|
|
# Combine knn with filters if needed
|
|
if filter_clauses:
|
|
query_body["query"] = {
|
|
"bool": {
|
|
"must": knn_query,
|
|
"filter": filter_clauses
|
|
}
|
|
}
|
|
else:
|
|
query_body["query"] = knn_query
|
|
|
|
# Execute search
|
|
response = self.client.search(index=self.collection_name, body=query_body)
|
|
|
|
hits = response["hits"]["hits"]
|
|
results = [
|
|
OutputData(
|
|
id=hit["_source"].get("id"),
|
|
score=hit["_score"],
|
|
payload=hit["_source"].get("payload", {})
|
|
)
|
|
for hit in hits
|
|
]
|
|
return results
|
|
|
|
def delete(self, vector_id: str) -> None:
|
|
"""Delete a vector by custom ID."""
|
|
# First, find the document by custom ID
|
|
search_query = {
|
|
"query": {
|
|
"term": {
|
|
"id": vector_id
|
|
}
|
|
}
|
|
}
|
|
|
|
response = self.client.search(index=self.collection_name, body=search_query)
|
|
hits = response.get("hits", {}).get("hits", [])
|
|
|
|
if not hits:
|
|
return
|
|
|
|
opensearch_id = hits[0]["_id"]
|
|
|
|
# Delete using the actual document ID
|
|
self.client.delete(index=self.collection_name, id=opensearch_id)
|
|
|
|
|
|
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None:
|
|
"""Update a vector and its payload using the custom 'id' field."""
|
|
|
|
# First, find the document by custom ID
|
|
search_query = {
|
|
"query": {
|
|
"term": {
|
|
"id": vector_id
|
|
}
|
|
}
|
|
}
|
|
|
|
response = self.client.search(index=self.collection_name, body=search_query)
|
|
hits = response.get("hits", {}).get("hits", [])
|
|
|
|
if not hits:
|
|
return
|
|
|
|
opensearch_id = hits[0]["_id"] # The actual document ID in OpenSearch
|
|
|
|
# Prepare updated fields
|
|
doc = {}
|
|
if vector is not None:
|
|
doc["vector_field"] = vector
|
|
if payload is not None:
|
|
doc["payload"] = payload
|
|
|
|
if doc:
|
|
try:
|
|
response = self.client.update(index=self.collection_name, id=opensearch_id, body={"doc": doc})
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def get(self, vector_id: str) -> Optional[OutputData]:
|
|
"""Retrieve a vector by ID."""
|
|
try:
|
|
# First check if index exists
|
|
if not self.client.indices.exists(index=self.collection_name):
|
|
logger.info(f"Index {self.collection_name} does not exist, creating it...")
|
|
self.create_col(self.collection_name, self.embedding_model_dims)
|
|
return None
|
|
|
|
search_query = {
|
|
"query": {
|
|
"term": {
|
|
"id": vector_id
|
|
}
|
|
}
|
|
}
|
|
response = self.client.search(index=self.collection_name, body=search_query)
|
|
|
|
hits = response["hits"]["hits"]
|
|
|
|
if not hits:
|
|
return None
|
|
|
|
return OutputData(
|
|
id=hits[0]["_source"].get("id"),
|
|
score=1.0,
|
|
payload=hits[0]["_source"].get("payload", {})
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error retrieving vector {vector_id}: {str(e)}")
|
|
return None
|
|
|
|
def list_cols(self) -> List[str]:
|
|
"""List all collections (indices)."""
|
|
return list(self.client.indices.get_alias().keys())
|
|
|
|
def delete_col(self) -> None:
|
|
"""Delete a collection (index)."""
|
|
self.client.indices.delete(index=self.collection_name)
|
|
|
|
def col_info(self, name: str) -> Any:
|
|
"""Get information about a collection (index)."""
|
|
return self.client.indices.get(index=name)
|
|
|
|
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[OutputData]:
|
|
|
|
try:
|
|
"""List all memories with optional filters."""
|
|
query: Dict = {
|
|
"query": {
|
|
"match_all": {}
|
|
}
|
|
}
|
|
|
|
filter_clauses = []
|
|
if filters:
|
|
for key in ["user_id", "run_id", "agent_id"]:
|
|
value = filters.get(key)
|
|
if value:
|
|
filter_clauses.append({
|
|
"term": {f"payload.{key}.keyword": value}
|
|
})
|
|
|
|
if filter_clauses:
|
|
query["query"] = {
|
|
"bool": {
|
|
"filter": filter_clauses
|
|
}
|
|
}
|
|
|
|
if limit:
|
|
query["size"] = limit
|
|
|
|
response = self.client.search(index=self.collection_name, body=query)
|
|
hits = response["hits"]["hits"]
|
|
|
|
return [[
|
|
OutputData(
|
|
id=hit["_source"].get("id"),
|
|
score=1.0,
|
|
payload=hit["_source"].get("payload", {})
|
|
)
|
|
for hit in hits
|
|
]]
|
|
except Exception:
|
|
return []
|
|
|
|
|
|
def reset(self):
|
|
"""Reset the index by deleting and recreating it."""
|
|
logger.warning(f"Resetting index {self.collection_name}...")
|
|
self.delete_col()
|
|
self.create_col(self.collection_name, self.embedding_model_dims)
|