42 lines
1.2 KiB
Plaintext
42 lines
1.2 KiB
Plaintext
---
|
||
title: Hugging Face
|
||
---
|
||
|
||
You can use embedding models from Huggingface to run Mem0 locally.
|
||
|
||
### Usage
|
||
|
||
```python
|
||
import os
|
||
from mem0 import Memory
|
||
|
||
os.environ["OPENAI_API_KEY"] = "your_api_key" # For LLM
|
||
|
||
config = {
|
||
"embedder": {
|
||
"provider": "huggingface",
|
||
"config": {
|
||
"model": "multi-qa-MiniLM-L6-cos-v1"
|
||
}
|
||
}
|
||
}
|
||
|
||
m = Memory.from_config(config)
|
||
messages = [
|
||
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
||
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
||
{"role": "user", "content": "I’m not a big fan of thriller movies but I love sci-fi movies."},
|
||
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
||
]
|
||
m.add(messages, user_id="john")
|
||
```
|
||
|
||
### Config
|
||
|
||
Here are the parameters available for configuring Huggingface embedder:
|
||
|
||
| Parameter | Description | Default Value |
|
||
| --- | --- | --- |
|
||
| `model` | The name of the model to use | `multi-qa-MiniLM-L6-cos-v1` |
|
||
| `embedding_dims` | Dimensions of the embedding model | `selected_model_dimensions` |
|
||
| `model_kwargs` | Additional arguments for the model | `None` | |