58 lines
1.5 KiB
Plaintext
58 lines
1.5 KiB
Plaintext
---
|
|
title: '🔍 search'
|
|
---
|
|
|
|
`.search()` enables you to uncover the most pertinent context by performing a semantic search across your data sources based on a given query. Refer to the function signature below:
|
|
|
|
### Parameters
|
|
|
|
<ParamField path="query" type="str">
|
|
Question
|
|
</ParamField>
|
|
<ParamField path="num_documents" type="int" optional>
|
|
Number of relevant documents to fetch. Defaults to `3`
|
|
</ParamField>
|
|
|
|
### Returns
|
|
|
|
<ResponseField name="answer" type="dict">
|
|
Return list of dictionaries that contain the relevant chunk and their source information.
|
|
</ResponseField>
|
|
|
|
## Usage
|
|
|
|
Refer to the following example on how to use the search api:
|
|
|
|
```python Code example
|
|
from embedchain import App
|
|
|
|
# Initialize app
|
|
app = App()
|
|
|
|
# Add data source
|
|
app.add("https://www.forbes.com/profile/elon-musk")
|
|
|
|
# Get relevant context using semantic search
|
|
context = app.search("What is the net worth of Elon?", num_documents=2)
|
|
print(context)
|
|
# Context:
|
|
# [
|
|
# {
|
|
# 'context': 'Elon Musk PROFILEElon MuskCEO, Tesla$221.9BReal Time Net Worth ...',
|
|
# 'metadata': {
|
|
# 'source': 'https://www.forbes.com/profile/elon-musk',
|
|
# 'document_id': 'some_document_id',
|
|
# 'score': 0.404,
|
|
# }
|
|
# },
|
|
# {
|
|
# 'context': 'company, which is now called X.Wealth HistoryHOVER TO REVEAL NET WORTH ...',
|
|
# 'metadata': {
|
|
# 'source': 'https://www.forbes.com/profile/elon-musk',
|
|
# 'document_id': 'some_document_id',
|
|
# 'score': 0.435,
|
|
# }
|
|
# }
|
|
# ]
|
|
```
|