44 lines
1.4 KiB
Python
44 lines
1.4 KiB
Python
from typing import Optional
|
|
|
|
from mem0.configs.embeddings.base import BaseEmbedderConfig
|
|
from mem0.embeddings.base import EmbeddingBase
|
|
|
|
try:
|
|
from ollama import Client
|
|
except ImportError:
|
|
raise ImportError("Ollama requires extra dependencies. Install with `pip install ollama`") from None
|
|
|
|
|
|
class OllamaEmbedding(EmbeddingBase):
|
|
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
|
|
super().__init__(config)
|
|
|
|
if not self.config.model:
|
|
self.config.model="nomic-embed-text"
|
|
if not self.config.embedding_dims:
|
|
self.config.embedding_dims=512
|
|
|
|
self.client = Client(host=self.config.ollama_base_url)
|
|
self._ensure_model_exists()
|
|
|
|
def _ensure_model_exists(self):
|
|
"""
|
|
Ensure the specified model exists locally. If not, pull it from Ollama.
|
|
"""
|
|
local_models = self.client.list()["models"]
|
|
if not any(model.get("name") == self.config.model for model in local_models):
|
|
self.client.pull(self.config.model)
|
|
|
|
def embed(self, text):
|
|
"""
|
|
Get the embedding for the given text using Ollama.
|
|
|
|
Args:
|
|
text (str): The text to embed.
|
|
|
|
Returns:
|
|
list: The embedding vector.
|
|
"""
|
|
response = self.client.embeddings(model=self.config.model, prompt=text)
|
|
return response["embedding"]
|