Files
t6_mem0/mem0/embeddings/gemini.py
2025-02-28 15:59:34 +05:30

33 lines
1.2 KiB
Python

import os
from typing import Literal, Optional
import google.generativeai as genai
from mem0.configs.embeddings.base import BaseEmbedderConfig
from mem0.embeddings.base import EmbeddingBase
class GoogleGenAIEmbedding(EmbeddingBase):
def __init__(self, config: Optional[BaseEmbedderConfig] = None):
super().__init__(config)
self.config.model = self.config.model or "models/text-embedding-004"
self.config.embedding_dims = self.config.embedding_dims or 768
api_key = self.config.api_key or os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=api_key)
def embed(self, text, memory_action: Optional[Literal["add", "search", "update"]] = None):
"""
Get the embedding for the given text using Google Generative AI.
Args:
text (str): The text to embed.
memory_action (optional): The type of embedding to use. Must be one of "add", "search", or "update". Defaults to None.
Returns:
list: The embedding vector.
"""
text = text.replace("\n", " ")
response = genai.embed_content(model=self.config.model, content=text)
return response["embedding"]