Files
t6_mem0/mem0/llms/anthropic.py
2024-09-07 22:39:28 +05:30

65 lines
2.2 KiB
Python

import os
from typing import Dict, List, Optional
try:
import anthropic
except ImportError:
raise ImportError("The 'anthropic' library is required. Please install it using 'pip install anthropic'.")
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
class AnthropicLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "claude-3-5-sonnet-20240620"
api_key = self.config.api_key or os.getenv("ANTHROPIC_API_KEY")
self.client = anthropic.Anthropic(api_key=api_key)
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using Anthropic.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
# Separate system message from other messages
system_message = ""
filtered_messages = []
for message in messages:
if message['role'] == 'system':
system_message = message['content']
else:
filtered_messages.append(message)
params = {
"model": self.config.model,
"messages": filtered_messages,
"system": system_message,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if tools: # TODO: Remove tools if no issues found with new memory addition logic
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.messages.create(**params)
return response.content[0].text