Files
t6_mem0/embedchain/apps/custom_app.py

84 lines
3.8 KiB
Python

from typing import Optional
from embedchain.config import CustomAppConfig
from embedchain.embedchain import EmbedChain
from embedchain.embedder.base import BaseEmbedder
from embedchain.helper.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
from embedchain.vectordb.base import BaseVectorDB
@register_deserializable
class CustomApp(EmbedChain):
"""
Embedchain's custom app allows for most flexibility.
You can craft your own mix of various LLMs, vector databases and embedding model/functions.
Methods:
add(source, data_type): adds the data from the given URL to the vector db.
query(query): finds answer to the given query using vector database and LLM.
chat(query): finds answer to the given query using vector database and LLM, with conversation history.
"""
def __init__(
self,
config: Optional[CustomAppConfig] = None,
llm: BaseLlm = None,
db: BaseVectorDB = None,
embedder: BaseEmbedder = None,
system_prompt: Optional[str] = None,
):
"""
Initialize a new `CustomApp` instance. You have to choose a LLM, database and embedder.
:param config: Config for the app instance. This is the most basic configuration,
that does not fall into the LLM, database or embedder category, defaults to None
:type config: Optional[CustomAppConfig], optional
:param llm: LLM Class instance. example: `from embedchain.llm.openai import OpenAILlm`, defaults to None
:type llm: BaseLlm
:param db: The database to use for storing and retrieving embeddings,
example: `from embedchain.vectordb.chroma_db import ChromaDb`, defaults to None
:type db: BaseVectorDB
:param embedder: The embedder (embedding model and function) use to calculate embeddings.
example: `from embedchain.embedder.gpt4all_embedder import GPT4AllEmbedder`, defaults to None
:type embedder: BaseEmbedder
:param system_prompt: System prompt that will be provided to the LLM as such, defaults to None
:type system_prompt: Optional[str], optional
:raises ValueError: LLM, database or embedder has not been defined.
:raises TypeError: LLM, database or embedder is not a valid class instance.
"""
# Config is not required, it has a default
if config is None:
config = CustomAppConfig()
if llm is None:
raise ValueError("LLM must be provided for custom app. Please import from `embedchain.llm`.")
if db is None:
raise ValueError("Database must be provided for custom app. Please import from `embedchain.vectordb`.")
if embedder is None:
raise ValueError("Embedder must be provided for custom app. Please import from `embedchain.embedder`.")
if not isinstance(config, CustomAppConfig):
raise TypeError(
"Config is not a `CustomAppConfig` instance. "
"Please make sure the type is right and that you are passing an instance."
)
if not isinstance(llm, BaseLlm):
raise TypeError(
"LLM is not a `BaseLlm` instance. "
"Please make sure the type is right and that you are passing an instance."
)
if not isinstance(db, BaseVectorDB):
raise TypeError(
"Database is not a `BaseVectorDB` instance. "
"Please make sure the type is right and that you are passing an instance."
)
if not isinstance(embedder, BaseEmbedder):
raise TypeError(
"Embedder is not a `BaseEmbedder` instance. "
"Please make sure the type is right and that you are passing an instance."
)
super().__init__(config=config, llm=llm, db=db, embedder=embedder, system_prompt=system_prompt)