Files
t6_mem0/embedchain/llm/huggingface.py
2023-12-11 05:41:51 +05:30

55 lines
1.9 KiB
Python

import importlib
import logging
import os
from typing import Optional
from langchain.llms.huggingface_hub import HuggingFaceHub
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class HuggingFaceLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
if "HUGGINGFACE_ACCESS_TOKEN" not in os.environ:
raise ValueError("Please set the HUGGINGFACE_ACCESS_TOKEN environment variable.")
try:
importlib.import_module("huggingface_hub")
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for HuggingFaceHub are not installed."
'Please install with `pip install --upgrade "embedchain[huggingface-hub]"`'
) from None
super().__init__(config=config)
def get_llm_model_answer(self, prompt):
if self.config.system_prompt:
raise ValueError("HuggingFaceLlm does not support `system_prompt`")
return HuggingFaceLlm._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
model_kwargs = {
"temperature": config.temperature or 0.1,
"max_new_tokens": config.max_tokens,
}
if config.top_p > 0.0 and config.top_p < 1.0:
model_kwargs["top_p"] = config.top_p
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
model = config.model or "google/flan-t5-xxl"
logging.info(f"Using HuggingFaceHub with model {model}")
llm = HuggingFaceHub(
huggingfacehub_api_token=os.environ["HUGGINGFACE_ACCESS_TOKEN"],
repo_id=model,
model_kwargs=model_kwargs,
)
return llm(prompt)