Files
t6_mem0/mem0/vector_stores/elasticsearch.py
2025-01-16 12:33:56 +05:30

210 lines
7.5 KiB
Python

import logging
from typing import Any, Dict, List, Optional
try:
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError("Elasticsearch requires extra dependencies. Install with `pip install elasticsearch`") from None
from pydantic import BaseModel
from mem0.configs.vector_stores.elasticsearch import ElasticsearchConfig
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: str
score: float
payload: Dict
class ElasticsearchDB(VectorStoreBase):
def __init__(self, **kwargs):
config = ElasticsearchConfig(**kwargs)
# Initialize Elasticsearch client
if config.cloud_id:
self.client = Elasticsearch(
cloud_id=config.cloud_id,
api_key=config.api_key,
verify_certs=config.verify_certs,
)
else:
self.client = Elasticsearch(
hosts=[f"{config.host}" if config.port is None else f"{config.host}:{config.port}"],
basic_auth=(config.user, config.password) if (config.user and config.password) else None,
verify_certs=config.verify_certs,
)
self.collection_name = config.collection_name
self.vector_dim = config.embedding_model_dims
# Create index only if auto_create_index is True
if config.auto_create_index:
self.create_index()
def create_index(self) -> None:
"""Create Elasticsearch index with proper mappings if it doesn't exist"""
index_settings = {
"mappings": {
"properties": {
"text": {"type": "text"},
"embedding": {
"type": "dense_vector",
"dims": self.vector_dim,
"index": True,
"similarity": "cosine",
},
"metadata": {"type": "object"},
"user_id": {"type": "keyword"},
"hash": {"type": "keyword"},
}
}
}
if not self.client.indices.exists(index=self.collection_name):
self.client.indices.create(index=self.collection_name, body=index_settings)
logger.info(f"Created index {self.collection_name}")
else:
logger.info(f"Index {self.collection_name} already exists")
def create_col(self, name: str, vector_size: int, distance: str = "cosine") -> None:
"""Create a new collection (index in Elasticsearch)."""
index_settings = {
"mappings": {
"properties": {
"vector": {"type": "dense_vector", "dims": vector_size, "index": True, "similarity": "cosine"},
"payload": {"type": "object"},
"id": {"type": "keyword"},
}
}
}
if not self.client.indices.exists(index=name):
self.client.indices.create(index=name, body=index_settings)
logger.info(f"Created index {name}")
def insert(
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
) -> List[OutputData]:
"""Insert vectors into the index."""
if not ids:
ids = [str(i) for i in range(len(vectors))]
if payloads is None:
payloads = [{} for _ in range(len(vectors))]
actions = []
for i, (vec, id_) in enumerate(zip(vectors, ids)):
action = {"_index": self.collection_name, "_id": id_, "vector": vec, "payload": payloads[i]}
actions.append(action)
bulk(self.client, actions)
# Return OutputData objects for inserted documents
results = []
for i, id_ in enumerate(ids):
results.append(
OutputData(
id=id_,
score=1.0, # Default score for inserts
payload=payloads[i],
)
)
return results
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
"""Search for similar vectors using KNN search with pre-filtering."""
search_query = {
"query": {
"bool": {
"must": [
# Exact match filters for memory isolation
*({"term": {f"payload.{k}": v}} for k, v in (filters or {}).items()),
# KNN vector search
{"knn": {"vector": {"vector": query, "k": limit}}},
]
}
}
}
response = self.client.search(index=self.collection_name, body=search_query)
results = []
for hit in response["hits"]["hits"]:
results.append(OutputData(id=hit["_id"], score=hit["_score"], payload=hit["_source"].get("payload", {})))
return results
def delete(self, vector_id: str) -> None:
"""Delete a vector by ID."""
self.client.delete(index=self.collection_name, id=vector_id)
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None:
"""Update a vector and its payload."""
doc = {}
if vector is not None:
doc["vector"] = vector
if payload is not None:
doc["payload"] = payload
self.client.update(index=self.collection_name, id=vector_id, body={"doc": doc})
def get(self, vector_id: str) -> Optional[OutputData]:
"""Retrieve a vector by ID."""
try:
response = self.client.get(index=self.collection_name, id=vector_id)
return OutputData(
id=response["_id"],
score=1.0, # Default score for direct get
payload=response["_source"].get("payload", {}),
)
except KeyError as e:
logger.warning(f"Missing key in Elasticsearch response: {e}")
return None
except TypeError as e:
logger.warning(f"Invalid response type from Elasticsearch: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error while parsing Elasticsearch response: {e}")
return None
def list_cols(self) -> List[str]:
"""List all collections (indices)."""
return list(self.client.indices.get_alias().keys())
def delete_col(self) -> None:
"""Delete a collection (index)."""
self.client.indices.delete(index=self.collection_name)
def col_info(self, name: str) -> Any:
"""Get information about a collection (index)."""
return self.client.indices.get(index=name)
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]:
"""List all memories."""
query: Dict[str, Any] = {"query": {"match_all": {}}}
if filters:
query["query"] = {"bool": {"must": [{"match": {f"payload.{k}": v}} for k, v in filters.items()]}}
if limit:
query["size"] = limit
response = self.client.search(index=self.collection_name, body=query)
results = []
for hit in response["hits"]["hits"]:
results.append(
OutputData(
id=hit["_id"],
score=1.0, # Default score for list operation
payload=hit["_source"].get("payload", {}),
)
)
return [results]