210 lines
7.5 KiB
Python
210 lines
7.5 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
try:
|
|
from elasticsearch import Elasticsearch
|
|
from elasticsearch.helpers import bulk
|
|
except ImportError:
|
|
raise ImportError("Elasticsearch requires extra dependencies. Install with `pip install elasticsearch`") from None
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from mem0.configs.vector_stores.elasticsearch import ElasticsearchConfig
|
|
from mem0.vector_stores.base import VectorStoreBase
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OutputData(BaseModel):
|
|
id: str
|
|
score: float
|
|
payload: Dict
|
|
|
|
|
|
class ElasticsearchDB(VectorStoreBase):
|
|
def __init__(self, **kwargs):
|
|
config = ElasticsearchConfig(**kwargs)
|
|
|
|
# Initialize Elasticsearch client
|
|
if config.cloud_id:
|
|
self.client = Elasticsearch(
|
|
cloud_id=config.cloud_id,
|
|
api_key=config.api_key,
|
|
verify_certs=config.verify_certs,
|
|
)
|
|
else:
|
|
self.client = Elasticsearch(
|
|
hosts=[f"{config.host}" if config.port is None else f"{config.host}:{config.port}"],
|
|
basic_auth=(config.user, config.password) if (config.user and config.password) else None,
|
|
verify_certs=config.verify_certs,
|
|
)
|
|
|
|
self.collection_name = config.collection_name
|
|
self.vector_dim = config.embedding_model_dims
|
|
|
|
# Create index only if auto_create_index is True
|
|
if config.auto_create_index:
|
|
self.create_index()
|
|
|
|
def create_index(self) -> None:
|
|
"""Create Elasticsearch index with proper mappings if it doesn't exist"""
|
|
index_settings = {
|
|
"mappings": {
|
|
"properties": {
|
|
"text": {"type": "text"},
|
|
"embedding": {
|
|
"type": "dense_vector",
|
|
"dims": self.vector_dim,
|
|
"index": True,
|
|
"similarity": "cosine",
|
|
},
|
|
"metadata": {"type": "object"},
|
|
"user_id": {"type": "keyword"},
|
|
"hash": {"type": "keyword"},
|
|
}
|
|
}
|
|
}
|
|
|
|
if not self.client.indices.exists(index=self.collection_name):
|
|
self.client.indices.create(index=self.collection_name, body=index_settings)
|
|
logger.info(f"Created index {self.collection_name}")
|
|
else:
|
|
logger.info(f"Index {self.collection_name} already exists")
|
|
|
|
def create_col(self, name: str, vector_size: int, distance: str = "cosine") -> None:
|
|
"""Create a new collection (index in Elasticsearch)."""
|
|
index_settings = {
|
|
"mappings": {
|
|
"properties": {
|
|
"vector": {"type": "dense_vector", "dims": vector_size, "index": True, "similarity": "cosine"},
|
|
"payload": {"type": "object"},
|
|
"id": {"type": "keyword"},
|
|
}
|
|
}
|
|
}
|
|
|
|
if not self.client.indices.exists(index=name):
|
|
self.client.indices.create(index=name, body=index_settings)
|
|
logger.info(f"Created index {name}")
|
|
|
|
def insert(
|
|
self, vectors: List[List[float]], payloads: Optional[List[Dict]] = None, ids: Optional[List[str]] = None
|
|
) -> List[OutputData]:
|
|
"""Insert vectors into the index."""
|
|
if not ids:
|
|
ids = [str(i) for i in range(len(vectors))]
|
|
|
|
if payloads is None:
|
|
payloads = [{} for _ in range(len(vectors))]
|
|
|
|
actions = []
|
|
for i, (vec, id_) in enumerate(zip(vectors, ids)):
|
|
action = {"_index": self.collection_name, "_id": id_, "vector": vec, "payload": payloads[i]}
|
|
actions.append(action)
|
|
|
|
bulk(self.client, actions)
|
|
|
|
# Return OutputData objects for inserted documents
|
|
results = []
|
|
for i, id_ in enumerate(ids):
|
|
results.append(
|
|
OutputData(
|
|
id=id_,
|
|
score=1.0, # Default score for inserts
|
|
payload=payloads[i],
|
|
)
|
|
)
|
|
return results
|
|
|
|
def search(self, query: List[float], limit: int = 5, filters: Optional[Dict] = None) -> List[OutputData]:
|
|
"""Search for similar vectors using KNN search with pre-filtering."""
|
|
search_query = {
|
|
"query": {
|
|
"bool": {
|
|
"must": [
|
|
# Exact match filters for memory isolation
|
|
*({"term": {f"payload.{k}": v}} for k, v in (filters or {}).items()),
|
|
# KNN vector search
|
|
{"knn": {"vector": {"vector": query, "k": limit}}},
|
|
]
|
|
}
|
|
}
|
|
}
|
|
|
|
response = self.client.search(index=self.collection_name, body=search_query)
|
|
|
|
results = []
|
|
for hit in response["hits"]["hits"]:
|
|
results.append(OutputData(id=hit["_id"], score=hit["_score"], payload=hit["_source"].get("payload", {})))
|
|
|
|
return results
|
|
|
|
def delete(self, vector_id: str) -> None:
|
|
"""Delete a vector by ID."""
|
|
self.client.delete(index=self.collection_name, id=vector_id)
|
|
|
|
def update(self, vector_id: str, vector: Optional[List[float]] = None, payload: Optional[Dict] = None) -> None:
|
|
"""Update a vector and its payload."""
|
|
doc = {}
|
|
if vector is not None:
|
|
doc["vector"] = vector
|
|
if payload is not None:
|
|
doc["payload"] = payload
|
|
|
|
self.client.update(index=self.collection_name, id=vector_id, body={"doc": doc})
|
|
|
|
def get(self, vector_id: str) -> Optional[OutputData]:
|
|
"""Retrieve a vector by ID."""
|
|
try:
|
|
response = self.client.get(index=self.collection_name, id=vector_id)
|
|
return OutputData(
|
|
id=response["_id"],
|
|
score=1.0, # Default score for direct get
|
|
payload=response["_source"].get("payload", {}),
|
|
)
|
|
except KeyError as e:
|
|
logger.warning(f"Missing key in Elasticsearch response: {e}")
|
|
return None
|
|
except TypeError as e:
|
|
logger.warning(f"Invalid response type from Elasticsearch: {e}")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error while parsing Elasticsearch response: {e}")
|
|
return None
|
|
|
|
def list_cols(self) -> List[str]:
|
|
"""List all collections (indices)."""
|
|
return list(self.client.indices.get_alias().keys())
|
|
|
|
def delete_col(self) -> None:
|
|
"""Delete a collection (index)."""
|
|
self.client.indices.delete(index=self.collection_name)
|
|
|
|
def col_info(self, name: str) -> Any:
|
|
"""Get information about a collection (index)."""
|
|
return self.client.indices.get(index=name)
|
|
|
|
def list(self, filters: Optional[Dict] = None, limit: Optional[int] = None) -> List[List[OutputData]]:
|
|
"""List all memories."""
|
|
query: Dict[str, Any] = {"query": {"match_all": {}}}
|
|
|
|
if filters:
|
|
query["query"] = {"bool": {"must": [{"match": {f"payload.{k}": v}} for k, v in filters.items()]}}
|
|
|
|
if limit:
|
|
query["size"] = limit
|
|
|
|
response = self.client.search(index=self.collection_name, body=query)
|
|
|
|
results = []
|
|
for hit in response["hits"]["hits"]:
|
|
results.append(
|
|
OutputData(
|
|
id=hit["_id"],
|
|
score=1.0, # Default score for list operation
|
|
payload=hit["_source"].get("payload", {}),
|
|
)
|
|
)
|
|
|
|
return [results]
|