Files
t6_mem0/tests/llms/test_langchain.py
2025-05-22 01:17:29 +05:30

85 lines
2.9 KiB
Python

from unittest.mock import Mock
import pytest
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.langchain import LangchainLLM
# Add the import for BaseChatModel
try:
from langchain.chat_models.base import BaseChatModel
except ImportError:
from unittest.mock import MagicMock
BaseChatModel = MagicMock
@pytest.fixture
def mock_langchain_model():
"""Mock a Langchain model for testing."""
mock_model = Mock(spec=BaseChatModel)
mock_model.invoke.return_value = Mock(content="This is a test response")
return mock_model
def test_langchain_initialization(mock_langchain_model):
"""Test that LangchainLLM initializes correctly with a valid model."""
# Create a config with the model instance directly
config = BaseLlmConfig(model=mock_langchain_model, temperature=0.7, max_tokens=100, api_key="test-api-key")
# Initialize the LangchainLLM
llm = LangchainLLM(config)
# Verify the model was correctly assigned
assert llm.langchain_model == mock_langchain_model
def test_generate_response(mock_langchain_model):
"""Test that generate_response correctly processes messages and returns a response."""
# Create a config with the model instance
config = BaseLlmConfig(model=mock_langchain_model, temperature=0.7, max_tokens=100, api_key="test-api-key")
# Initialize the LangchainLLM
llm = LangchainLLM(config)
# Create test messages
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
{"role": "user", "content": "Tell me a joke."},
]
# Get response
response = llm.generate_response(messages)
# Verify the correct message format was passed to the model
expected_langchain_messages = [
("system", "You are a helpful assistant."),
("human", "Hello, how are you?"),
("ai", "I'm doing well! How can I help you?"),
("human", "Tell me a joke."),
]
mock_langchain_model.invoke.assert_called_once()
# Extract the first argument of the first call
actual_messages = mock_langchain_model.invoke.call_args[0][0]
assert actual_messages == expected_langchain_messages
assert response == "This is a test response"
def test_invalid_model():
"""Test that LangchainLLM raises an error with an invalid model."""
config = BaseLlmConfig(model="not-a-valid-model-instance", temperature=0.7, max_tokens=100, api_key="test-api-key")
with pytest.raises(ValueError, match="`model` must be an instance of BaseChatModel"):
LangchainLLM(config)
def test_missing_model():
"""Test that LangchainLLM raises an error when model is None."""
config = BaseLlmConfig(model=None, temperature=0.7, max_tokens=100, api_key="test-api-key")
with pytest.raises(ValueError, match="`model` parameter is required"):
LangchainLLM(config)