Files
t6_mem0/cookbooks/add_memory_using_qdrant_cloud.py

41 lines
1.0 KiB
Python

# This example shows how to use vector config to use QDRANT CLOUD
import os
from dotenv import load_dotenv
from mem0 import Memory
# Loading OpenAI API Key
load_dotenv()
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
USER_ID = "test"
quadrant_host="xx.gcp.cloud.qdrant.io"
# creating the config attributes
collection_name="memory" # this is the collection I created in QDRANT cloud
api_key=os.environ.get("QDRANT_API_KEY") # Getting the QDRANT api KEY
host=quadrant_host
port=6333 #Default port for QDRANT cloud
# Creating the config dict
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": collection_name,
"host": host,
"port": port,
"path": None,
"api_key":api_key
}
}
}
# this is the change, create the memory class using from config
memory = Memory().from_config(config)
USER_DATA = """
I am a strong believer in memory architecture.
"""
response = memory.add(USER_DATA, user_id=USER_ID)
print(response)