Files
t6_mem0/mem0/vector_stores/weaviate.py
2025-07-03 14:40:39 -07:00

317 lines
12 KiB
Python

import logging
import uuid
from typing import Dict, List, Mapping, Optional
from pydantic import BaseModel
try:
import weaviate
except ImportError:
raise ImportError(
"The 'weaviate' library is required. Please install it using 'pip install weaviate-client weaviate'."
)
import weaviate.classes.config as wvcc
from weaviate.classes.init import Auth
from weaviate.classes.query import Filter, MetadataQuery
from weaviate.util import get_valid_uuid
from mem0.vector_stores.base import VectorStoreBase
logger = logging.getLogger(__name__)
class OutputData(BaseModel):
id: str
score: float
payload: Dict
class Weaviate(VectorStoreBase):
def __init__(
self,
collection_name: str,
embedding_model_dims: int,
cluster_url: str = None,
auth_client_secret: str = None,
additional_headers: dict = None,
):
"""
Initialize the Weaviate vector store.
Args:
collection_name (str): Name of the collection/class in Weaviate.
embedding_model_dims (int): Dimensions of the embedding model.
client (WeaviateClient, optional): Existing Weaviate client instance. Defaults to None.
cluster_url (str, optional): URL for Weaviate server. Defaults to None.
auth_config (dict, optional): Authentication configuration for Weaviate. Defaults to None.
additional_headers (dict, optional): Additional headers for requests. Defaults to None.
"""
if "localhost" in cluster_url:
self.client = weaviate.connect_to_local(headers=additional_headers)
else:
self.client = weaviate.connect_to_wcs(
cluster_url=cluster_url,
auth_credentials=Auth.api_key(auth_client_secret),
headers=additional_headers,
)
self.collection_name = collection_name
self.embedding_model_dims = embedding_model_dims
self.create_col(embedding_model_dims)
def _parse_output(self, data: Dict) -> List[OutputData]:
"""
Parse the output data.
Args:
data (Dict): Output data.
Returns:
List[OutputData]: Parsed output data.
"""
keys = ["ids", "distances", "metadatas"]
values = []
for key in keys:
value = data.get(key, [])
if isinstance(value, list) and value and isinstance(value[0], list):
value = value[0]
values.append(value)
ids, distances, metadatas = values
max_length = max(len(v) for v in values if isinstance(v, list) and v is not None)
result = []
for i in range(max_length):
entry = OutputData(
id=ids[i] if isinstance(ids, list) and ids and i < len(ids) else None,
score=(distances[i] if isinstance(distances, list) and distances and i < len(distances) else None),
payload=(metadatas[i] if isinstance(metadatas, list) and metadatas and i < len(metadatas) else None),
)
result.append(entry)
return result
def create_col(self, vector_size, distance="cosine"):
"""
Create a new collection with the specified schema.
Args:
vector_size (int): Size of the vectors to be stored.
distance (str, optional): Distance metric for vector similarity. Defaults to "cosine".
"""
if self.client.collections.exists(self.collection_name):
logger.debug(f"Collection {self.collection_name} already exists. Skipping creation.")
return
properties = [
wvcc.Property(name="ids", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="hash", data_type=wvcc.DataType.TEXT),
wvcc.Property(
name="metadata",
data_type=wvcc.DataType.TEXT,
description="Additional metadata",
),
wvcc.Property(name="data", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="created_at", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="category", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="updated_at", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="user_id", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="agent_id", data_type=wvcc.DataType.TEXT),
wvcc.Property(name="run_id", data_type=wvcc.DataType.TEXT),
]
vectorizer_config = wvcc.Configure.Vectorizer.none()
vector_index_config = wvcc.Configure.VectorIndex.hnsw()
self.client.collections.create(
self.collection_name,
vectorizer_config=vectorizer_config,
vector_index_config=vector_index_config,
properties=properties,
)
def insert(self, vectors, payloads=None, ids=None):
"""
Insert vectors into a collection.
Args:
vectors (list): List of vectors to insert.
payloads (list, optional): List of payloads corresponding to vectors. Defaults to None.
ids (list, optional): List of IDs corresponding to vectors. Defaults to None.
"""
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
with self.client.batch.fixed_size(batch_size=100) as batch:
for idx, vector in enumerate(vectors):
object_id = ids[idx] if ids and idx < len(ids) else str(uuid.uuid4())
object_id = get_valid_uuid(object_id)
data_object = payloads[idx] if payloads and idx < len(payloads) else {}
# Ensure 'id' is not included in properties (it's used as the Weaviate object ID)
if "ids" in data_object:
del data_object["ids"]
batch.add_object(collection=self.collection_name, properties=data_object, uuid=object_id, vector=vector)
def search(
self, query: str, vectors: List[float], limit: int = 5, filters: Optional[Dict] = None
) -> List[OutputData]:
"""
Search for similar vectors.
"""
collection = self.client.collections.get(str(self.collection_name))
filter_conditions = []
if filters:
for key, value in filters.items():
if value and key in ["user_id", "agent_id", "run_id"]:
filter_conditions.append(Filter.by_property(key).equal(value))
combined_filter = Filter.all_of(filter_conditions) if filter_conditions else None
response = collection.query.hybrid(
query="",
vector=vectors,
limit=limit,
filters=combined_filter,
return_properties=["hash", "created_at", "updated_at", "user_id", "agent_id", "run_id", "data", "category"],
return_metadata=MetadataQuery(score=True),
)
results = []
for obj in response.objects:
payload = obj.properties.copy()
for id_field in ["run_id", "agent_id", "user_id"]:
if id_field in payload and payload[id_field] is None:
del payload[id_field]
payload["id"] = str(obj.uuid).split("'")[0] # Include the id in the payload
results.append(
OutputData(
id=str(obj.uuid),
score=1
if obj.metadata.distance is None
else 1 - obj.metadata.distance, # Convert distance to score
payload=payload,
)
)
return results
def delete(self, vector_id):
"""
Delete a vector by ID.
Args:
vector_id: ID of the vector to delete.
"""
collection = self.client.collections.get(str(self.collection_name))
collection.data.delete_by_id(vector_id)
def update(self, vector_id, vector=None, payload=None):
"""
Update a vector and its payload.
Args:
vector_id: ID of the vector to update.
vector (list, optional): Updated vector. Defaults to None.
payload (dict, optional): Updated payload. Defaults to None.
"""
collection = self.client.collections.get(str(self.collection_name))
if payload:
collection.data.update(uuid=vector_id, properties=payload)
if vector:
existing_data = self.get(vector_id)
if existing_data:
existing_data = dict(existing_data)
if "id" in existing_data:
del existing_data["id"]
existing_payload: Mapping[str, str] = existing_data
collection.data.update(uuid=vector_id, properties=existing_payload, vector=vector)
def get(self, vector_id):
"""
Retrieve a vector by ID.
Args:
vector_id: ID of the vector to retrieve.
Returns:
dict: Retrieved vector and metadata.
"""
vector_id = get_valid_uuid(vector_id)
collection = self.client.collections.get(str(self.collection_name))
response = collection.query.fetch_object_by_id(
uuid=vector_id,
return_properties=["hash", "created_at", "updated_at", "user_id", "agent_id", "run_id", "data", "category"],
)
# results = {}
# print("reponse",response)
# for obj in response.objects:
payload = response.properties.copy()
payload["id"] = str(response.uuid).split("'")[0]
results = OutputData(
id=str(response.uuid).split("'")[0],
score=1.0,
payload=payload,
)
return results
def list_cols(self):
"""
List all collections.
Returns:
list: List of collection names.
"""
collections = self.client.collections.list_all()
logger.debug(f"collections: {collections}")
print(f"collections: {collections}")
return {"collections": [{"name": col.name} for col in collections]}
def delete_col(self):
"""Delete a collection."""
self.client.collections.delete(self.collection_name)
def col_info(self):
"""
Get information about a collection.
Returns:
dict: Collection information.
"""
schema = self.client.collections.get(self.collection_name)
if schema:
return schema
return None
def list(self, filters=None, limit=100) -> List[OutputData]:
"""
List all vectors in a collection.
"""
collection = self.client.collections.get(self.collection_name)
filter_conditions = []
if filters:
for key, value in filters.items():
if value and key in ["user_id", "agent_id", "run_id"]:
filter_conditions.append(Filter.by_property(key).equal(value))
combined_filter = Filter.all_of(filter_conditions) if filter_conditions else None
response = collection.query.fetch_objects(
limit=limit,
filters=combined_filter,
return_properties=["hash", "created_at", "updated_at", "user_id", "agent_id", "run_id", "data", "category"],
)
results = []
for obj in response.objects:
payload = obj.properties.copy()
payload["id"] = str(obj.uuid).split("'")[0]
results.append(OutputData(id=str(obj.uuid).split("'")[0], score=1.0, payload=payload))
return [results]
def reset(self):
"""Reset the index by deleting and recreating it."""
logger.warning(f"Resetting index {self.collection_name}...")
self.delete_col()
self.create_col()