Files
t6_mem0/embedchain/llm/azure_openai.py

39 lines
1.3 KiB
Python

import logging
from typing import Optional
from embedchain.config import BaseLlmConfig
from embedchain.helper.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class AzureOpenAILlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config=config)
def get_llm_model_answer(self, prompt):
return AzureOpenAILlm._get_answer(prompt=prompt, config=self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig) -> str:
from langchain.chat_models import AzureChatOpenAI
if not config.deployment_name:
raise ValueError("Deployment name must be provided for Azure OpenAI")
chat = AzureChatOpenAI(
deployment_name=config.deployment_name,
openai_api_version="2023-05-15",
model_name=config.model or "gpt-3.5-turbo",
temperature=config.temperature,
max_tokens=config.max_tokens,
streaming=config.stream,
)
if config.top_p and config.top_p != 1:
logging.warning("Config option `top_p` is not supported by this model.")
messages = BaseLlm._get_messages(prompt, system_prompt=config.system_prompt)
return chat(messages).content