Files
t6_mem0/embedchain/config/cache_config.py

97 lines
3.7 KiB
Python

from typing import Any, Optional
from embedchain.config.base_config import BaseConfig
from embedchain.helpers.json_serializable import register_deserializable
@register_deserializable
class CacheSimilarityEvalConfig(BaseConfig):
"""
This is the evaluator to compare two embeddings according to their distance computed in embedding retrieval stage.
In the retrieval stage, `search_result` is the distance used for approximate nearest neighbor search and have been
put into `cache_dict`. `max_distance` is used to bound this distance to make it between [0-`max_distance`].
`positive` is used to indicate this distance is directly proportional to the similarity of two entities.
If `positive` is set `False`, `max_distance` will be used to subtract this distance to get the final score.
:param max_distance: the bound of maximum distance.
:type max_distance: float
:param positive: if the larger distance indicates more similar of two entities, It is True. Otherwise, it is False.
:type positive: bool
"""
def __init__(
self,
strategy: Optional[str] = "distance",
max_distance: Optional[float] = 1.0,
positive: Optional[bool] = False,
):
self.strategy = strategy
self.max_distance = max_distance
self.positive = positive
@staticmethod
def from_config(config: Optional[dict[str, Any]]):
if config is None:
return CacheSimilarityEvalConfig()
else:
return CacheSimilarityEvalConfig(
strategy=config.get("strategy", "distance"),
max_distance=config.get("max_distance", 1.0),
positive=config.get("positive", False),
)
@register_deserializable
class CacheInitConfig(BaseConfig):
"""
This is a cache init config. Used to initialize a cache.
:param similarity_threshold: a threshold ranged from 0 to 1 to filter search results with similarity score higher \
than the threshold. When it is 0, there is no hits. When it is 1, all search results will be returned as hits.
:type similarity_threshold: float
:param auto_flush: it will be automatically flushed every time xx pieces of data are added, default to 20
:type auto_flush: int
"""
def __init__(
self,
similarity_threshold: Optional[float] = 0.8,
auto_flush: Optional[int] = 20,
):
if similarity_threshold < 0 or similarity_threshold > 1:
raise ValueError(f"similarity_threshold {similarity_threshold} should be between 0 and 1")
self.similarity_threshold = similarity_threshold
self.auto_flush = auto_flush
@staticmethod
def from_config(config: Optional[dict[str, Any]]):
if config is None:
return CacheInitConfig()
else:
return CacheInitConfig(
similarity_threshold=config.get("similarity_threshold", 0.8),
auto_flush=config.get("auto_flush", 20),
)
@register_deserializable
class CacheConfig(BaseConfig):
def __init__(
self,
similarity_eval_config: Optional[CacheSimilarityEvalConfig] = CacheSimilarityEvalConfig(),
init_config: Optional[CacheInitConfig] = CacheInitConfig(),
):
self.similarity_eval_config = similarity_eval_config
self.init_config = init_config
@staticmethod
def from_config(config: Optional[dict[str, Any]]):
if config is None:
return CacheConfig()
else:
return CacheConfig(
similarity_eval_config=CacheSimilarityEvalConfig.from_config(config.get("similarity_evaluation", {})),
init_config=CacheInitConfig.from_config(config.get("init_config", {})),
)