71 lines
2.8 KiB
Plaintext
71 lines
2.8 KiB
Plaintext
# Azure AI Search
|
|
|
|
[Azure AI Search](https://learn.microsoft.com/azure/search/search-what-is-azure-search/) (formerly known as "Azure Cognitive Search") provides secure information retrieval at scale over user-owned content in traditional and generative AI search applications.
|
|
|
|
## Usage
|
|
|
|
```python
|
|
import os
|
|
from mem0 import Memory
|
|
|
|
os.environ["OPENAI_API_KEY"] = "sk-xx" # This key is used for embedding purpose
|
|
|
|
config = {
|
|
"vector_store": {
|
|
"provider": "azure_ai_search",
|
|
"config": {
|
|
"service_name": "ai-search-test",
|
|
"api_key": "*****",
|
|
"collection_name": "mem0",
|
|
"embedding_model_dims": 1536
|
|
}
|
|
}
|
|
}
|
|
|
|
m = Memory.from_config(config)
|
|
messages = [
|
|
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
|
|
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
|
|
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
|
|
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
|
|
]
|
|
m.add(messages, user_id="alice", metadata={"category": "movies"})
|
|
```
|
|
|
|
# Using binary compression for large vector collections
|
|
config = {
|
|
"vector_store": {
|
|
"provider": "azure_ai_search",
|
|
"config": {
|
|
"service_name": "ai-search-test",
|
|
"api_key": "*****",
|
|
"collection_name": "mem0",
|
|
"embedding_model_dims": 1536,
|
|
"compression_type": "binary",
|
|
"use_float16": True # Use half precision for storage efficiency
|
|
}
|
|
}
|
|
}
|
|
```
|
|
|
|
## Configuration Parameters
|
|
|
|
| Parameter | Description | Default Value | Options |
|
|
| --- | --- | --- | --- |
|
|
| `service_name` | Azure AI Search service name | Required | - |
|
|
| `api_key` | API key of the Azure AI Search service | Required | - |
|
|
| `collection_name` | The name of the collection/index to store vectors | `mem0` | Any valid index name |
|
|
| `embedding_model_dims` | Dimensions of the embedding model | `1536` | Any integer value |
|
|
| `compression_type` | Type of vector compression to use | `none` | `none`, `scalar`, `binary` |
|
|
| `use_float16` | Store vectors in half precision (Edm.Half) | `False` | `True`, `False` |
|
|
|
|
## Notes on Configuration Options
|
|
|
|
- **compression_type**:
|
|
- `none`: No compression, uses full vector precision
|
|
- `scalar`: Scalar quantization with reasonable balance of speed and accuracy
|
|
- `binary`: Binary quantization for maximum compression with some accuracy trade-off
|
|
|
|
- **use_float16**: Using half precision (float16) reduces storage requirements but may slightly impact accuracy. Useful for very large vector collections.
|
|
|
|
- **Filterable Fields**: The implementation automatically extracts `user_id`, `run_id`, and `agent_id` fields from payloads for filtering. |