Files
t6_mem0/embedchain/config/vector_db/pinecone.py

48 lines
1.9 KiB
Python

import os
from typing import Optional
from embedchain.config.vector_db.base import BaseVectorDbConfig
from embedchain.helpers.json_serializable import register_deserializable
@register_deserializable
class PineconeDBConfig(BaseVectorDbConfig):
def __init__(
self,
index_name: Optional[str] = None,
api_key: Optional[str] = None,
vector_dimension: int = 1536,
metric: Optional[str] = "cosine",
pod_config: Optional[dict[str, any]] = None,
serverless_config: Optional[dict[str, any]] = None,
hybrid_search: bool = False,
bm25_encoder: any = None,
batch_size: Optional[int] = 100,
**extra_params: dict[str, any],
):
self.metric = metric
self.api_key = api_key
self.index_name = index_name
self.vector_dimension = vector_dimension
self.extra_params = extra_params
self.hybrid_search = hybrid_search
self.bm25_encoder = bm25_encoder
self.batch_size = batch_size
if pod_config is None and serverless_config is None:
# If no config is provided, use the default pod spec config
pod_environment = os.environ.get("PINECONE_ENV", "gcp-starter")
self.pod_config = {"environment": pod_environment, "metadata_config": {"indexed": ["*"]}}
else:
self.pod_config = pod_config
self.serverless_config = serverless_config
if self.pod_config and self.serverless_config:
raise ValueError("Only one of pod_config or serverless_config can be provided.")
if self.hybrid_search and self.metric != "dotproduct":
raise ValueError(
"Hybrid search is only supported with dotproduct metric in Pinecone. See full docs here: https://docs.pinecone.io/docs/hybrid-search#limitations"
) # noqa:E501
super().__init__(collection_name=self.index_name, dir=None)