Files
t6_mem0/embedchain/config/vector_db/opensearch.py

42 lines
1.7 KiB
Python

from typing import Optional
from embedchain.config.vector_db.base import BaseVectorDbConfig
from embedchain.helpers.json_serializable import register_deserializable
@register_deserializable
class OpenSearchDBConfig(BaseVectorDbConfig):
def __init__(
self,
opensearch_url: str,
http_auth: tuple[str, str],
vector_dimension: int = 1536,
collection_name: Optional[str] = None,
dir: Optional[str] = None,
batch_size: Optional[int] = 100,
**extra_params: dict[str, any],
):
"""
Initializes a configuration class instance for an OpenSearch client.
:param collection_name: Default name for the collection, defaults to None
:type collection_name: Optional[str], optional
:param opensearch_url: URL of the OpenSearch domain
:type opensearch_url: str, Eg, "http://localhost:9200"
:param http_auth: Tuple of username and password
:type http_auth: tuple[str, str], Eg, ("username", "password")
:param vector_dimension: Dimension of the vector, defaults to 1536 (openai embedding model)
:type vector_dimension: int, optional
:param dir: Path to the database directory, where the database is stored, defaults to None
:type dir: Optional[str], optional
:param batch_size: Number of items to insert in one batch, defaults to 100
:type batch_size: Optional[int], optional
"""
self.opensearch_url = opensearch_url
self.http_auth = http_auth
self.vector_dimension = vector_dimension
self.extra_params = extra_params
self.batch_size = batch_size
super().__init__(collection_name=collection_name, dir=dir)