Files
t6_mem0/mem0/llms/vllm.py
2025-07-08 11:33:20 +05:30

92 lines
2.9 KiB
Python

import json
import os
from typing import Dict, List, Optional
from openai import OpenAI
from openai import OpenAI
from mem0.configs.llms.base import BaseLlmConfig
from mem0.llms.base import LLMBase
from mem0.memory.utils import extract_json
class VllmLLM(LLMBase):
def __init__(self, config: Optional[BaseLlmConfig] = None):
super().__init__(config)
if not self.config.model:
self.config.model = "Qwen/Qwen2.5-32B-Instruct"
self.config.api_key = self.config.api_key or os.getenv("VLLM_API_KEY") or "vllm-api-key"
base_url = self.config.vllm_base_url or os.getenv("VLLM_BASE_URL")
self.client = OpenAI(base_url=base_url, api_key=self.config.api_key)
def _parse_response(self, response, tools):
"""
Process the response based on whether tools are used or not.
Args:
response: The raw response from API.
tools: The list of tools provided in the request.
Returns:
str or dict: The processed response.
"""
if tools:
processed_response = {
"content": response.choices[0].message.content,
"tool_calls": [],
}
if response.choices[0].message.tool_calls:
for tool_call in response.choices[0].message.tool_calls:
processed_response["tool_calls"].append(
{
"name": tool_call.function.name,
"arguments": json.loads(extract_json(tool_call.function.arguments)),
}
)
return processed_response
else:
return response.choices[0].message.content
def generate_response(
self,
messages: List[Dict[str, str]],
response_format=None,
tools: Optional[List[Dict]] = None,
tool_choice: str = "auto",
):
"""
Generate a response based on the given messages using vLLM.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
response_format (str or object, optional): Format of the response. Defaults to "text".
tools (list, optional): List of tools that the model can call. Defaults to None.
tool_choice (str, optional): Tool choice method. Defaults to "auto".
Returns:
str: The generated response.
"""
params = {
"model": self.config.model,
"messages": messages,
"temperature": self.config.temperature,
"max_tokens": self.config.max_tokens,
"top_p": self.config.top_p,
}
if response_format:
params["response_format"] = response_format
if tools:
params["tools"] = tools
params["tool_choice"] = tool_choice
response = self.client.chat.completions.create(**params)
return self._parse_response(response, tools)