489 lines
17 KiB
Python
489 lines
17 KiB
Python
import logging
|
|
import hashlib
|
|
import uuid
|
|
import pytz
|
|
from datetime import datetime
|
|
from typing import Any, Dict
|
|
|
|
from pydantic import ValidationError
|
|
|
|
from mem0.llms.utils.tools import (
|
|
ADD_MEMORY_TOOL,
|
|
DELETE_MEMORY_TOOL,
|
|
UPDATE_MEMORY_TOOL,
|
|
)
|
|
from mem0.configs.prompts import MEMORY_DEDUCTION_PROMPT
|
|
from mem0.memory.base import MemoryBase
|
|
from mem0.memory.setup import setup_config
|
|
from mem0.memory.storage import SQLiteManager
|
|
from mem0.memory.telemetry import capture_event
|
|
from mem0.memory.utils import get_update_memory_messages
|
|
from mem0.utils.factory import LlmFactory, EmbedderFactory, VectorStoreFactory
|
|
from mem0.configs.base import MemoryItem, MemoryConfig
|
|
|
|
# Setup user config
|
|
setup_config()
|
|
|
|
|
|
class Memory(MemoryBase):
|
|
def __init__(self, config: MemoryConfig = MemoryConfig()):
|
|
self.config = config
|
|
self.embedding_model = EmbedderFactory.create(
|
|
self.config.embedder.provider, self.config.embedder.config
|
|
)
|
|
self.vector_store = VectorStoreFactory.create(
|
|
self.config.vector_store.provider, self.config.vector_store.config
|
|
)
|
|
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
|
|
self.db = SQLiteManager(self.config.history_db_path)
|
|
self.collection_name = self.config.vector_store.config.collection_name
|
|
|
|
capture_event("mem0.init", self)
|
|
|
|
@classmethod
|
|
def from_config(cls, config_dict: Dict[str, Any]):
|
|
try:
|
|
config = MemoryConfig(**config_dict)
|
|
except ValidationError as e:
|
|
logging.error(f"Configuration validation error: {e}")
|
|
raise
|
|
return cls(config)
|
|
|
|
def add(
|
|
self,
|
|
data,
|
|
user_id=None,
|
|
agent_id=None,
|
|
run_id=None,
|
|
metadata=None,
|
|
filters=None,
|
|
prompt=None,
|
|
):
|
|
"""
|
|
Create a new memory.
|
|
|
|
Args:
|
|
data (str): Data to store in the memory.
|
|
user_id (str, optional): ID of the user creating the memory. Defaults to None.
|
|
agent_id (str, optional): ID of the agent creating the memory. Defaults to None.
|
|
run_id (str, optional): ID of the run creating the memory. Defaults to None.
|
|
metadata (dict, optional): Metadata to store with the memory. Defaults to None.
|
|
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
|
prompt (str, optional): Prompt to use for memory deduction. Defaults to None.
|
|
|
|
Returns:
|
|
str: ID of the created memory.
|
|
"""
|
|
if metadata is None:
|
|
metadata = {}
|
|
embeddings = self.embedding_model.embed(data)
|
|
|
|
filters = filters or {}
|
|
if user_id:
|
|
filters["user_id"] = metadata["user_id"] = user_id
|
|
if agent_id:
|
|
filters["agent_id"] = metadata["agent_id"] = agent_id
|
|
if run_id:
|
|
filters["run_id"] = metadata["run_id"] = run_id
|
|
|
|
if not any(key in filters for key in ("user_id", "agent_id", "run_id")):
|
|
raise ValueError(
|
|
"One of the filters: user_id, agent_id or run_id is required!"
|
|
)
|
|
|
|
if not prompt:
|
|
prompt = MEMORY_DEDUCTION_PROMPT.format(user_input=data, metadata=metadata)
|
|
extracted_memories = self.llm.generate_response(
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": "You are an expert at deducing facts, preferences and memories from unstructured text.",
|
|
},
|
|
{"role": "user", "content": prompt},
|
|
]
|
|
)
|
|
existing_memories = self.vector_store.search(
|
|
query=embeddings,
|
|
limit=5,
|
|
filters=filters,
|
|
)
|
|
existing_memories = [
|
|
MemoryItem(
|
|
id=mem.id,
|
|
score=mem.score,
|
|
metadata=mem.payload,
|
|
memory=mem.payload["data"],
|
|
)
|
|
for mem in existing_memories
|
|
]
|
|
serialized_existing_memories = [
|
|
item.model_dump(include={"id", "memory", "score"})
|
|
for item in existing_memories
|
|
]
|
|
logging.info(f"Total existing memories: {len(existing_memories)}")
|
|
messages = get_update_memory_messages(
|
|
serialized_existing_memories, extracted_memories
|
|
)
|
|
# Add tools for noop, add, update, delete memory.
|
|
tools = [ADD_MEMORY_TOOL, UPDATE_MEMORY_TOOL, DELETE_MEMORY_TOOL]
|
|
response = self.llm.generate_response(messages=messages, tools=tools)
|
|
tool_calls = response["tool_calls"]
|
|
|
|
response = []
|
|
if tool_calls:
|
|
# Create a new memory
|
|
available_functions = {
|
|
"add_memory": self._create_memory_tool,
|
|
"update_memory": self._update_memory_tool,
|
|
"delete_memory": self._delete_memory_tool,
|
|
}
|
|
for tool_call in tool_calls:
|
|
function_name = tool_call["name"]
|
|
function_to_call = available_functions[function_name]
|
|
function_args = tool_call["arguments"]
|
|
logging.info(
|
|
f"[openai_func] func: {function_name}, args: {function_args}"
|
|
)
|
|
|
|
# Pass metadata to the function if it requires it
|
|
if function_name in ["add_memory", "update_memory"]:
|
|
function_args["metadata"] = metadata
|
|
|
|
function_result = function_to_call(**function_args)
|
|
# Fetch the memory_id from the response
|
|
response.append(
|
|
{
|
|
"id": function_result,
|
|
"event": function_name.replace("_memory", ""),
|
|
"data": function_args.get("data"),
|
|
}
|
|
)
|
|
capture_event(
|
|
"mem0.add.function_call",
|
|
self,
|
|
{"memory_id": function_result, "function_name": function_name},
|
|
)
|
|
capture_event("mem0.add", self)
|
|
return {"message": "ok"}
|
|
|
|
def get(self, memory_id):
|
|
"""
|
|
Retrieve a memory by ID.
|
|
|
|
Args:
|
|
memory_id (str): ID of the memory to retrieve.
|
|
|
|
Returns:
|
|
dict: Retrieved memory.
|
|
"""
|
|
capture_event("mem0.get", self, {"memory_id": memory_id})
|
|
memory = self.vector_store.get(vector_id=memory_id)
|
|
if not memory:
|
|
return None
|
|
|
|
filters = {
|
|
key: memory.payload[key]
|
|
for key in ["user_id", "agent_id", "run_id"]
|
|
if memory.payload.get(key)
|
|
}
|
|
|
|
# Prepare base memory item
|
|
memory_item = MemoryItem(
|
|
id=memory.id,
|
|
memory=memory.payload["data"],
|
|
hash=memory.payload.get("hash"),
|
|
created_at=memory.payload.get("created_at"),
|
|
updated_at=memory.payload.get("updated_at"),
|
|
).model_dump(exclude={"score"})
|
|
|
|
# Add metadata if there are additional keys
|
|
excluded_keys = {
|
|
"user_id",
|
|
"agent_id",
|
|
"run_id",
|
|
"hash",
|
|
"data",
|
|
"created_at",
|
|
"updated_at",
|
|
}
|
|
additional_metadata = {
|
|
k: v for k, v in memory.payload.items() if k not in excluded_keys
|
|
}
|
|
if additional_metadata:
|
|
memory_item["metadata"] = additional_metadata
|
|
|
|
result = {**memory_item, **filters}
|
|
|
|
return result
|
|
|
|
def get_all(self, user_id=None, agent_id=None, run_id=None, limit=100):
|
|
"""
|
|
List all memories.
|
|
|
|
Returns:
|
|
list: List of all memories.
|
|
"""
|
|
filters = {}
|
|
if user_id:
|
|
filters["user_id"] = user_id
|
|
if agent_id:
|
|
filters["agent_id"] = agent_id
|
|
if run_id:
|
|
filters["run_id"] = run_id
|
|
|
|
capture_event("mem0.get_all", self, {"filters": len(filters), "limit": limit})
|
|
memories = self.vector_store.list(filters=filters, limit=limit)
|
|
|
|
excluded_keys = {
|
|
"user_id",
|
|
"agent_id",
|
|
"run_id",
|
|
"hash",
|
|
"data",
|
|
"created_at",
|
|
"updated_at",
|
|
}
|
|
return [
|
|
{
|
|
**MemoryItem(
|
|
id=mem.id,
|
|
memory=mem.payload["data"],
|
|
hash=mem.payload.get("hash"),
|
|
created_at=mem.payload.get("created_at"),
|
|
updated_at=mem.payload.get("updated_at"),
|
|
).model_dump(exclude={"score"}),
|
|
**{
|
|
key: mem.payload[key]
|
|
for key in ["user_id", "agent_id", "run_id"]
|
|
if key in mem.payload
|
|
},
|
|
**(
|
|
{
|
|
"metadata": {
|
|
k: v
|
|
for k, v in mem.payload.items()
|
|
if k not in excluded_keys
|
|
}
|
|
}
|
|
if any(k for k in mem.payload if k not in excluded_keys)
|
|
else {}
|
|
),
|
|
}
|
|
for mem in memories[0]
|
|
]
|
|
|
|
def search(
|
|
self, query, user_id=None, agent_id=None, run_id=None, limit=100, filters=None
|
|
):
|
|
"""
|
|
Search for memories.
|
|
|
|
Args:
|
|
query (str): Query to search for.
|
|
user_id (str, optional): ID of the user to search for. Defaults to None.
|
|
agent_id (str, optional): ID of the agent to search for. Defaults to None.
|
|
run_id (str, optional): ID of the run to search for. Defaults to None.
|
|
limit (int, optional): Limit the number of results. Defaults to 100.
|
|
filters (dict, optional): Filters to apply to the search. Defaults to None.
|
|
|
|
Returns:
|
|
list: List of search results.
|
|
"""
|
|
filters = filters or {}
|
|
if user_id:
|
|
filters["user_id"] = user_id
|
|
if agent_id:
|
|
filters["agent_id"] = agent_id
|
|
if run_id:
|
|
filters["run_id"] = run_id
|
|
|
|
if not any(key in filters for key in ("user_id", "agent_id", "run_id")):
|
|
raise ValueError(
|
|
"One of the filters: user_id, agent_id or run_id is required!"
|
|
)
|
|
|
|
capture_event("mem0.search", self, {"filters": len(filters), "limit": limit})
|
|
embeddings = self.embedding_model.embed(query)
|
|
memories = self.vector_store.search(
|
|
query=embeddings, limit=limit, filters=filters
|
|
)
|
|
|
|
excluded_keys = {
|
|
"user_id",
|
|
"agent_id",
|
|
"run_id",
|
|
"hash",
|
|
"data",
|
|
"created_at",
|
|
"updated_at",
|
|
}
|
|
|
|
return [
|
|
{
|
|
**MemoryItem(
|
|
id=mem.id,
|
|
memory=mem.payload["data"],
|
|
hash=mem.payload.get("hash"),
|
|
created_at=mem.payload.get("created_at"),
|
|
updated_at=mem.payload.get("updated_at"),
|
|
score=mem.score,
|
|
).model_dump(),
|
|
**{
|
|
key: mem.payload[key]
|
|
for key in ["user_id", "agent_id", "run_id"]
|
|
if key in mem.payload
|
|
},
|
|
**(
|
|
{
|
|
"metadata": {
|
|
k: v
|
|
for k, v in mem.payload.items()
|
|
if k not in excluded_keys
|
|
}
|
|
}
|
|
if any(k for k in mem.payload if k not in excluded_keys)
|
|
else {}
|
|
),
|
|
}
|
|
for mem in memories
|
|
]
|
|
|
|
def update(self, memory_id, data):
|
|
"""
|
|
Update a memory by ID.
|
|
|
|
Args:
|
|
memory_id (str): ID of the memory to update.
|
|
data (dict): Data to update the memory with.
|
|
|
|
Returns:
|
|
dict: Updated memory.
|
|
"""
|
|
capture_event("mem0.update", self, {"memory_id": memory_id})
|
|
self._update_memory_tool(memory_id, data)
|
|
return {"message": "Memory updated successfully!"}
|
|
|
|
def delete(self, memory_id):
|
|
"""
|
|
Delete a memory by ID.
|
|
|
|
Args:
|
|
memory_id (str): ID of the memory to delete.
|
|
"""
|
|
capture_event("mem0.delete", self, {"memory_id": memory_id})
|
|
self._delete_memory_tool(memory_id)
|
|
return {"message": "Memory deleted successfully!"}
|
|
|
|
def delete_all(self, user_id=None, agent_id=None, run_id=None):
|
|
"""
|
|
Delete all memories.
|
|
|
|
Args:
|
|
user_id (str, optional): ID of the user to delete memories for. Defaults to None.
|
|
agent_id (str, optional): ID of the agent to delete memories for. Defaults to None.
|
|
run_id (str, optional): ID of the run to delete memories for. Defaults to None.
|
|
"""
|
|
filters = {}
|
|
if user_id:
|
|
filters["user_id"] = user_id
|
|
if agent_id:
|
|
filters["agent_id"] = agent_id
|
|
if run_id:
|
|
filters["run_id"] = run_id
|
|
|
|
if not filters:
|
|
raise ValueError(
|
|
"At least one filter is required to delete all memories. If you want to delete all memories, use the `reset()` method."
|
|
)
|
|
|
|
capture_event("mem0.delete_all", self, {"filters": len(filters)})
|
|
memories = self.vector_store.list(filters=filters)[0]
|
|
for memory in memories:
|
|
self._delete_memory_tool(memory.id)
|
|
return {"message": "Memories deleted successfully!"}
|
|
|
|
def history(self, memory_id):
|
|
"""
|
|
Get the history of changes for a memory by ID.
|
|
|
|
Args:
|
|
memory_id (str): ID of the memory to get history for.
|
|
|
|
Returns:
|
|
list: List of changes for the memory.
|
|
"""
|
|
capture_event("mem0.history", self, {"memory_id": memory_id})
|
|
return self.db.get_history(memory_id)
|
|
|
|
def _create_memory_tool(self, data, metadata=None):
|
|
logging.info(f"Creating memory with {data=}")
|
|
embeddings = self.embedding_model.embed(data)
|
|
memory_id = str(uuid.uuid4())
|
|
metadata = metadata or {}
|
|
metadata["data"] = data
|
|
metadata["hash"] = hashlib.md5(data.encode()).hexdigest()
|
|
metadata["created_at"] = datetime.now(pytz.timezone("US/Pacific")).isoformat()
|
|
|
|
self.vector_store.insert(
|
|
vectors=[embeddings],
|
|
ids=[memory_id],
|
|
payloads=[metadata],
|
|
)
|
|
self.db.add_history(
|
|
memory_id, None, data, "ADD", created_at=metadata["created_at"]
|
|
)
|
|
return memory_id
|
|
|
|
def _update_memory_tool(self, memory_id, data, metadata=None):
|
|
existing_memory = self.vector_store.get(vector_id=memory_id)
|
|
prev_value = existing_memory.payload.get("data")
|
|
|
|
new_metadata = metadata or {}
|
|
new_metadata["data"] = data
|
|
new_metadata["hash"] = existing_memory.payload.get("hash")
|
|
new_metadata["created_at"] = existing_memory.payload.get("created_at")
|
|
new_metadata["updated_at"] = datetime.now(
|
|
pytz.timezone("US/Pacific")
|
|
).isoformat()
|
|
|
|
if "user_id" in existing_memory.payload:
|
|
new_metadata["user_id"] = existing_memory.payload["user_id"]
|
|
if "agent_id" in existing_memory.payload:
|
|
new_metadata["agent_id"] = existing_memory.payload["agent_id"]
|
|
if "run_id" in existing_memory.payload:
|
|
new_metadata["run_id"] = existing_memory.payload["run_id"]
|
|
|
|
embeddings = self.embedding_model.embed(data)
|
|
self.vector_store.update(
|
|
vector_id=memory_id,
|
|
vector=embeddings,
|
|
payload=new_metadata,
|
|
)
|
|
logging.info(f"Updating memory with ID {memory_id=} with {data=}")
|
|
self.db.add_history(
|
|
memory_id,
|
|
prev_value,
|
|
data,
|
|
"UPDATE",
|
|
created_at=new_metadata["created_at"],
|
|
updated_at=new_metadata["updated_at"],
|
|
)
|
|
|
|
def _delete_memory_tool(self, memory_id):
|
|
logging.info(f"Deleting memory with {memory_id=}")
|
|
existing_memory = self.vector_store.get(vector_id=memory_id)
|
|
prev_value = existing_memory.payload["data"]
|
|
self.vector_store.delete(vector_id=memory_id)
|
|
self.db.add_history(memory_id, prev_value, None, "DELETE", is_deleted=1)
|
|
|
|
def reset(self):
|
|
"""
|
|
Reset the memory store.
|
|
"""
|
|
self.vector_store.delete_col()
|
|
self.db.reset()
|
|
capture_event("mem0.reset", self)
|
|
|
|
def chat(self, query):
|
|
raise NotImplementedError("Chat function not implemented yet.")
|