38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
import hashlib
|
|
import json
|
|
import os
|
|
|
|
from embedchain.loaders.base_loader import BaseLoader
|
|
|
|
|
|
class JSONLoader(BaseLoader):
|
|
@staticmethod
|
|
def load_data(content):
|
|
"""Load a json file. Each data point is a key value pair."""
|
|
try:
|
|
from llama_hub.jsondata.base import \
|
|
JSONDataReader as LLHBUBJSONLoader
|
|
except ImportError:
|
|
raise Exception(
|
|
f"Couldn't import the required packages to load {content}, \
|
|
Do `pip install --upgrade 'embedchain[json]`"
|
|
)
|
|
|
|
loader = LLHBUBJSONLoader()
|
|
|
|
if not isinstance(content, str) and not os.path.isfile(content):
|
|
print(f"Invaid content input. Provide the correct path to the json file saved locally in {content}")
|
|
|
|
data = []
|
|
data_content = []
|
|
|
|
with open(content, "r") as json_file:
|
|
json_data = json.load(json_file)
|
|
docs = loader.load_data(json_data)
|
|
for doc in docs:
|
|
doc_content = doc.text
|
|
data.append({"content": doc_content, "meta_data": {"url": content}})
|
|
data_content.append(doc_content)
|
|
doc_id = hashlib.sha256((content + ", ".join(data_content)).encode()).hexdigest()
|
|
return {"doc_id": doc_id, "data": data}
|