Files
t6_mem0/embedchain/loaders/gmail.py
2023-10-27 20:02:03 -07:00

124 lines
4.2 KiB
Python

import hashlib
import logging
import os
import quopri
from textwrap import dedent
from bs4 import BeautifulSoup
try:
from llama_hub.gmail.base import GmailReader
except ImportError:
raise ImportError("Gmail requires extra dependencies. Install with `pip install embedchain[gmail]`") from None
from embedchain.loaders.base_loader import BaseLoader
from embedchain.utils import clean_string
def get_header(text: str, header: str) -> str:
start_string_position = text.find(header)
pos_start = text.find(":", start_string_position) + 1
pos_end = text.find("\n", pos_start)
header = text[pos_start:pos_end]
return header.strip()
class GmailLoader(BaseLoader):
def load_data(self, query):
"""Load data from gmail."""
if not os.path.isfile("credentials.json"):
raise FileNotFoundError(
"You must download the valid credentials file from your google \
dev account. Refer this `https://cloud.google.com/docs/authentication/api-keys`"
)
loader = GmailReader(query=query, service=None, results_per_page=20)
documents = loader.load_data()
logging.info(f"Gmail Loader: {len(documents)} mails found for query- {query}")
data = []
data_contents = []
logging.info(f"Gmail Loader: {len(documents)} mails found")
for document in documents:
original_size = len(document.text)
snippet = document.metadata.get("snippet")
meta_data = {
"url": document.metadata.get("id"),
"date": get_header(document.text, "Date"),
"subject": get_header(document.text, "Subject"),
"from": get_header(document.text, "From"),
"to": get_header(document.text, "To"),
"search_query": query,
}
# Decode
decoded_bytes = quopri.decodestring(document.text)
decoded_str = decoded_bytes.decode("utf-8", errors="replace")
# Slice
mail_start = decoded_str.find("<!DOCTYPE")
email_data = decoded_str[mail_start:]
# Web Page HTML Processing
soup = BeautifulSoup(email_data, "html.parser")
tags_to_exclude = [
"nav",
"aside",
"form",
"header",
"noscript",
"svg",
"canvas",
"footer",
"script",
"style",
]
for tag in soup(tags_to_exclude):
tag.decompose()
ids_to_exclude = ["sidebar", "main-navigation", "menu-main-menu"]
for id in ids_to_exclude:
tags = soup.find_all(id=id)
for tag in tags:
tag.decompose()
classes_to_exclude = [
"elementor-location-header",
"navbar-header",
"nav",
"header-sidebar-wrapper",
"blog-sidebar-wrapper",
"related-posts",
]
for class_name in classes_to_exclude:
tags = soup.find_all(class_=class_name)
for tag in tags:
tag.decompose()
content = soup.get_text()
content = clean_string(content)
cleaned_size = len(content)
if original_size != 0:
logging.info(
f"[{id}] Cleaned page size: {cleaned_size} characters, down from {original_size} (shrunk: {original_size-cleaned_size} chars, {round((1-(cleaned_size/original_size)) * 100, 2)}%)" # noqa:E501
)
result = f"""
email from '{meta_data.get('from')}' to '{meta_data.get('to')}'
subject: {meta_data.get('subject')}
date: {meta_data.get('date')}
preview: {snippet}
content: f{content}
"""
data_content = dedent(result)
data.append({"content": data_content, "meta_data": meta_data})
data_contents.append(data_content)
doc_id = hashlib.sha256((query + ", ".join(data_contents)).encode()).hexdigest()
response_data = {"doc_id": doc_id, "data": data}
return response_data