Files
t6_mem0/embedchain/llm/google.py
2023-12-15 06:10:55 +05:30

65 lines
2.1 KiB
Python

import importlib
import logging
import os
from typing import Optional
import google.generativeai as genai
from embedchain.config import BaseLlmConfig
from embedchain.helpers.json_serializable import register_deserializable
from embedchain.llm.base import BaseLlm
@register_deserializable
class GoogleLlm(BaseLlm):
def __init__(self, config: Optional[BaseLlmConfig] = None):
if "GOOGLE_API_KEY" not in os.environ:
raise ValueError("Please set the GOOGLE_API_KEY environment variable.")
try:
importlib.import_module("google.generativeai")
except ModuleNotFoundError:
raise ModuleNotFoundError(
"The required dependencies for GoogleLlm are not installed."
'Please install with `pip install --upgrade "embedchain[google]"`'
) from None
super().__init__(config)
genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
def get_llm_model_answer(self, prompt):
if self.config.system_prompt:
raise ValueError("GoogleLlm does not support `system_prompt`")
return GoogleLlm._get_answer(prompt, self.config)
@staticmethod
def _get_answer(prompt: str, config: BaseLlmConfig):
model_name = config.model or "gemini-pro"
logging.info(f"Using Google LLM model: {model_name}")
model = genai.GenerativeModel(model_name=model_name)
generation_config_params = {
"candidate_count": 1,
"max_output_tokens": config.max_tokens,
"temperature": config.temperature or 0.5,
}
if config.top_p >= 0.0 and config.top_p <= 1.0:
generation_config_params["top_p"] = config.top_p
else:
raise ValueError("`top_p` must be > 0.0 and < 1.0")
generation_config = genai.types.GenerationConfig(**generation_config_params)
response = model.generate_content(
prompt,
generation_config=generation_config,
stream=config.stream,
)
if config.stream:
for chunk in response:
yield chunk.text
else:
return response.text